Laser & Optoelectronics Progress, Volume. 58, Issue 12, 1210007(2021)

Offline Handwritten Text Recognition Based on CTC-Attention

Yangyang Ma and Bing Xiao*
Author Affiliations
  • College of Computer Science, Shaanxi Normal University, Shaanxi, Xi’an, 710062 China
  • show less
    Figures & Tables(6)
    MTL framework based on CTC-Attention
    CNN+LSTM structure
    Example of original dataset
    Word accuracy curves of different λ
    • Table 1. CER and WER of MTL on valid dataset unit: %

      View table

      Table 1. CER and WER of MTL on valid dataset unit: %

      ModelCER(valid)WER(valid)
      CTC9.727.6
      Attention7.119.1
      MTL(λ=0.2)6.618.2
      MTL(λ=0.5)7.419.8
      MTL(λ=0.8)10.429.2
    • Table 2. Comparison of the recognition rate of several popular methods on the IAM dataset

      View table

      Table 2. Comparison of the recognition rate of several popular methods on the IAM dataset

      MethodAuthorPre-processingLexiconLanguage modelPre-trainCERWER
      RNN+CTCMor et al[19]Krishnan et al[20]Stunner et al[21]Wiginton et al[22]2.4 millionSynthetic6.344.776.0720.9016.1913.3019.07
      AttentionBluche et al[6]Sueiras et al[1]CTC12.60 8.8023.80
      CTC_AttentionOurs6.6018.20
    Tools

    Get Citation

    Copy Citation Text

    Yangyang Ma, Bing Xiao. Offline Handwritten Text Recognition Based on CTC-Attention[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1210007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 24, 2020

    Accepted: Oct. 14, 2020

    Published Online: Jun. 18, 2021

    The Author Email: Xiao Bing (16392603@qq.com)

    DOI:10.3788/LOP202158.1210007

    Topics