Laser & Optoelectronics Progress, Volume. 60, Issue 18, 1811008(2023)

Transmission Properties and Applications of Flexible Dielectric Metallic Hollow Terahertz Waveguide

Benlei Zhao1, Xin Pei1, Jiachen Jiang1, Menghui He1, Xiaosong Zhu1, and Yiwei Shi1,2、*
Author Affiliations
  • 1Key Laboratory of Electromagnetic Wave of Information Science and Technology, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • 2Zhongshan -Fudan Joint Innovation Center, Zhongshan528437, Guangdong , China
  • show less
    References(82)

    [1] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 1, 26-33(2002).

    [2] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928(2002).

    [3] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [4] Federici J F, Schulkin B, Huang F et al. THz imaging and sensing for security applications-explosives, weapons and drugs[J]. Semiconductor Science and Technology, 20, S266-S280(2005).

    [5] Redo-Sanchez A, Zhang X C. Terahertz science and technology trends[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 260-269(2008).

    [6] Liu S G, Zhong R B. Recent development of terahertz science and technology and it’s applications[J]. Journal of University of Electronic Science and Technology of China, 38, 481-486(2009).

    [7] Ghasempour Y, Shrestha R, Charous A et al. Single-shot link discovery for terahertz wireless networks[J]. Nature Communications, 11, 2017(2020).

    [8] Harter T, Füllner C, Kemal J N et al. Generalized Kramers-Kronig receiver for coherent terahertz communications[J]. Nature Photonics, 14, 601-606(2020).

    [9] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 143-171(2011).

    [10] Yang Y H, Yamagami Y, Yu X B et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 14, 446-451(2020).

    [11] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science[J]. Nature Photonics, 11, 16-18(2017).

    [12] Chen S C, Feng Z, Li J et al. Ghost spintronic THz-emitter-array microscope[J]. Light: Science & Applications, 9, 99(2020).

    [13] Ma J J, Shrestha R, Adelberg J et al. Security and eavesdropping in terahertz wireless links[J]. Nature, 563, 89-93(2018).

    [14] Woodward R M. Terahertz technology in global homeland security[J]. Proceedings of SPIE, 5781, 22-31(2005).

    [15] Fang W H, Lv X Q, Ma Z T et al. A flexible terahertz metamaterial biosensor for cancer cell growth and migration detection[J]. Micromachines, 13, 631(2022).

    [16] Yan X, Yang M S, Zhang Z et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 126, 485-492(2019).

    [17] Zhang C B, Xue T J, Zhang J et al. Terahertz meta-biosensor based on high-Q electrical resonance enhanced by the interference of toroidal dipole[J]. Biosensors and Bioelectronics, 214, 114493(2022).

    [18] Zhang C B, Xue T J, Zhang J et al. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells[J]. Nanophotonics, 11, 101-109(2021).

    [19] He M H, Zeng J F, Chen Z X et al. Low-loss flexible polarization-maintaining hollow waveguide for linearly polarized 100 GHz radiation transmission and subwavelength imaging[J]. Journal of Lightwave Technology, 40, 6712-6718(2022).

    [20] He M H, Zeng J F, Zhang X A et al. Transmission and imaging characteristics of flexible gradually tapered waveguide at 0.3 THz[J]. Optics Express, 29, 8430-8440(2021).

    [21] Stantchev R I, Li K D, Pickwell-MacPherson E. Real-time terahertz imaging with a single-pixel detector[C](2021).

    [22] Zheng S, Li C, Li S C et al. Realizing frequency controlled wide-angle beam scanning with an artificial electromagnetic structure in the terahertz band[J]. Optics Express, 26, 18532-18544(2018).

    [23] Laman N, Harsha S S, Grischkowsky D. Narrow-line waveguide terahertz time-domain spectroscopy of aspirin and aspirin precursors[J]. Applied Spectroscopy, 62, 319-326(2008).

    [24] Mendis R, Grischkowsky D. Undistorted guided-wave propagation of subpicosecond terahertz pulses[J]. Optics Letters, 26, 846-848(2001).

    [25] Mendis R, Grischkowsky D. THz interconnect with low-loss and low-group velocity dispersion[J]. IEEE Microwave and Wireless Components Letters, 11, 444-446(2001).

    [26] McGowan R W, Gallot G, Grischkowsky D. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides[J]. Optics Letters, 24, 1431-1433(1999).

    [27] Gallot G, Jamison S P, McGowan R W et al. Terahertz waveguides[J]. Journal of the Optical Society of America B, 17, 851-863(2000).

    [28] Harrington J A, Pedersen P, Bowden B F et al. Hollow CU-coated plastic waveguides for the delivery of THz radiation[J]. Proceedings of SPIE, 5727, 143-150(2005).

    [29] Lai C H, Hsueh Y C, Chen H W et al. Low-index terahertz pipe waveguides[J]. Optics Letters, 34, 3457-3459(2009).

    [30] Liu J, Xiao M F, Shen J L et al. Flexible PMMA pipe for terahertz propagation[J]. Proceedings of SPIE, 8562, 85620R(2012).

    [31] Lu J T, Hsueh Y C, Huang Y R et al. Bending loss of terahertz pipe waveguides[J]. Optics Express, 18, 26332-26338(2010).

    [32] Hong B B, Swithenbank M, Greenall N et al. Low-loss asymptotically single-mode THz Bragg fiber fabricated by digital light processing rapid prototyping[J]. IEEE Transactions on Terahertz Science and Technology, 8, 90-99(2018).

    [33] Li J W, Ma T, Nallapan K et al. 3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications[C](2017).

    [34] Cruz A L S, Argyros A, Tang X L et al. 3D-printed terahertz Bragg fiber[C](2015).

    [35] Goto M, Quema A, Takahashi H et al. Teflon photonic crystal fiber as terahertz waveguide[J]. Japanese Journal of Applied Physics, 43, L317-L319(2004).

    [36] Hasan M R, Anower M S, Hasan M I et al. Polarization maintaining low-loss slotted core kagome lattice THz fiber[J]. IEEE Photonics Technology Letters, 28, 1751-1754(2016).

    [37] Ren G B, Gong Y D, Shum P et al. Polarization maintaining air-core bandgap fibers for terahertz wave guiding[J]. IEEE Journal of Quantum Electronics, 45, 506-513(2009).

    [38] Habib M A, Reza M S, Abdulrazak L F et al. Extremely high birefringent and low loss microstructure optical waveguide: design and analysis[J]. Optics Communications, 446, 93-99(2019).

    [39] Hossain M S, Kamruzzaman M M, Sen S et al. Hexahedron core with sensor based photonic crystal fiber: an approach of design and performance analysis[J]. Sensing and Bio-Sensing Research, 32, 100426(2021).

    [40] Luo J F, Chen S S, Qu H K et al. Highly birefringent single-mode suspended-core fiber in terahertz regime[J]. Journal of Lightwave Technology, 36, 3242-3248(2018).

    [41] Xu G F, Skorobogatiy M. Continuous fabrication of polarization maintaining fibers via an annealing improved infinity additive manufacturing technique for THz communications[J]. Optics Express, 31, 12894-12911(2023).

    [42] Yang S, Sheng X Z, Zhao G Z et al. Novel pentagram THz hollow core anti-resonant fiber using a 3D printer[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 40, 720-730(2019).

    [43] Rabii C D, Gibson D J, Harrington J A. Processing and characterization of silver films used to fabricate hollow glass waveguides[J]. Applied Optics, 38, 4486-4493(1999).

    [44] Matsuura Y, Hanamoto K, Sato S et al. Hollow-fiber delivery of high-power pulsed Nd∶YAG laser light[J]. Optics Letters, 23, 1858-1860(1998).

    [45] Matsuura Y, Miyagi M. Er: YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides[J]. Applied Optics, 32, 6598-6601(1993).

    [46] Zeng X, Liu B H, He Y J et al. Fabrication and characterization of AgI/Ag hollow fibers for near-infrared lasers[J]. Optics & Laser Technology, 49, 209-212(2013).

    [47] He M H, Chen Z X, Zeng J F et al. Design, fabrication, and characterization of a single-polarization single-mode flexible hollow waveguide for low loss millimeter wave propagation[J]. Optics Express, 30, 10178-10186(2022).

    [48] Liu S, Xie G X, Li G S et al. A robust PEEK/silver-coated hollow waveguide for terahertz bendable transmission in hot and cold environments[J]. Results in Physics, 35, 105395(2022).

    [49] Liu S, Hou G N, Wu Y et al. Copper coated PEEK hollow waveguide and durability investigations for low-loss and bendable transmission of low-frequency terahertz wave[J]. Infrared Physics & Technology, 131, 104674(2023).

    [50] Tang X L, Sun B S, Shi Y W. Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency[J]. Optics Express, 19, 24967-24979(2011).

    [51] Liu S, Xie G X, Li G S et al. Transmission and confocal imaging characteristics of bendable ABS/Ag-coated hollow waveguide at low THz band[J]. IEEE Transactions on Terahertz Science and Technology, 13, 193-199(2023).

    [52] Abe S, Miyagi M. Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 39, 230-238(1991).

    [53] Miyagi M, Harada K, Aizawa Y et al. Transmission properties of circular dielectric-coated metallic waveguides for infrared transmission[J]. Proceedings of SPIE, 0484, 117-123(1984).

    [54] Shi Y W, Ito K, Matsuura Y et al. Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared[J]. Optics Letters, 30, 2867-2869(2005).

    [55] Aming A, Rahman B M A. Design and characterization low-loss modes in dielectric-coated hollow-core waveguides at THz frequency[J]. Journal of Lightwave Technology, 36, 2716-2722(2018).

    [56] Bowden B, Harrington J A, Mitrofanov O. Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation[J]. Optics Letters, 32, 2945-2947(2007).

    [57] Doradla P, Joseph C S, Kumar J et al. Characterization of bending loss in hollow flexible terahertz waveguides[J]. Optics Express, 20, 19176-19184(2012).

    [58] Siegel P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory and Techniques, 52, 2438-2447(2004).

    [59] Wu K J, Qi C H, Zhu Z et al. Terahertz wave accelerates DNA unwinding: a molecular dynamics simulation study[J]. The Journal of Physical Chemistry Letters, 11, 7002-7008(2020).

    [60] Yang X, Yang K, Luo Y et al. Terahertz spectroscopy for bacterial detection: opportunities and challenges[J]. Applied Microbiology and Biotechnology, 100, 5289-5299(2016).

    [61] Liu X, Qiao Z, Chai Y M et al. Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, 2015685118(2021).

    [62] Smye S W, Chamberlain J M, Fitzgerald A J et al. The interaction between Terahertz radiation and biological tissue[J]. Physics in Medicine and Biology, 46, R101-R112(2001).

    [63] Zhang J X, He Y, Liang S S et al. Non-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learning[J]. Nature Communications, 12, 2730(2021).

    [64] Sun L, Zhao L, Peng R Y. Research progress in the effects of terahertz waves on biomacromolecules[J]. Military Medical Research, 8, 28(2021).

    [65] Zhao L, Hao Y H, Peng R Y. Advances in the biological effects of terahertz wave radiation[J]. Military Medical Research, 1, 26(2014).

    [66] Ito T, Matsuura Y, Miyagi M et al. Flexible terahertz fiber optics with low bend-induced losses[J]. Journal of the Optical Society of America B, 24, 1230-1235(2007).

    [67] Matsuura Y, Abel T, Harrington J A. Optical properties of small-bore hollow glass waveguides[J]. Applied Optics, 34, 6842-6847(1995).

    [68] Matsuura Y, Takeda E. Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy[J]. Journal of the Optical Society of America B, 25, 1949-1954(2008).

    [69] Sengupta A, Bandyopadhyay A, Bowden B F et al. Characterisation of olefin copolymers using terahertz spectroscopy[J]. Electronics Letters, 42, 1477-1479(2006).

    [70] Shi Y W, Ito K, Ma L et al. Fabrication of a polymer-coated silver hollow optical fiber with high performance[J]. Applied Optics, 45, 6736-6740(2006).

    [71] Melzer J E, Harrington J A. Silver/cyclic olefin copolymer hollow glass waveguides for infrared laser delivery[J]. Applied Optics, 54, 9548-9553(2015).

    [72] Nielsen K, Rasmussen H K, Adam A J et al. Bendable, low-loss Topas fibers for the terahertz frequency range[J]. Optics Express, 17, 8592-8601(2009).

    [73] Jelinkova H, Miyagi M, Sulc J et al. Delivery of high-powered picosecond pulses in near-IR region by special silver hollow-glass waveguides[J]. Proceedings of SPIE, 3596, 32-42(1999).

    [74] Wang Y, Hiraga H, Matsuura Y et al. Fabrication of robust hollow waveguide devices for Er: YAG laser light[J]. Proceedings of SPIE, 2977, 36-40(1997).

    [75] Wang Y, Hongo A, Kato Y et al. Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides[J]. Applied Optics, 36, 2886-2892(1997).

    [76] Kyaw C, Yahiaoui R, Chase Z A et al. Guided-mode resonances in flexible 2D terahertz photonic crystals[J]. Optica, 7, 537-541(2020).

    [77] Zhang X, Zhu X S, Shi Y W. Fabrication and performance investigation of the EVA/Ag coated hollow fiber[J]. Optics & Laser Technology, 111, 802-809(2019).

    [78] Xie G X, Zhong Y, Li G S et al. 300GHz bending transmission of silver/polypropylene hollow terahertz waveguide[J]. Results in Physics, 19, 103534(2020).

    [79] Zhang X W, Tan Z Y, Chen K W et al. Transmission characteristics of dielectric-coated metallic waveguides in G band and 4.3 THz[J]. Journal of Infrared and Millimeter Waves, 38, 215-222(2019).

    [80] Tan Y X, Zhao F, He M H et al. Transmission of high-frequency terahertz band signal beyond 300 GHz over metallic hollow core fiber[J]. Journal of Lightwave Technology, 40, 700-707(2022).

    [81] Yu J J, Li X Y, Tang X L et al. High-speed signal transmission at W-band over dielectric-coated metallic hollow fiber[J]. IEEE Transactions on Microwave Theory and Techniques, 63, 1836-1842(2015).

    [82] Yu S Y, Zhu X S, Shi Y W. Transmission characteristics of dielectric-coated metallic hollow waveguide at W-band[J]. Acta Optica Sinica, 38, 0306001(2018).

    Tools

    Get Citation

    Copy Citation Text

    Benlei Zhao, Xin Pei, Jiachen Jiang, Menghui He, Xiaosong Zhu, Yiwei Shi. Transmission Properties and Applications of Flexible Dielectric Metallic Hollow Terahertz Waveguide[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: May. 29, 2023

    Accepted: Aug. 1, 2023

    Published Online: Sep. 19, 2023

    The Author Email: Yiwei Shi (ywshi@fudan.edu.cn)

    DOI:10.3788/LOP231393

    Topics