Acta Laser Biology Sinica, Volume. 29, Issue 4, 309(2020)

A Study of Changes in the Characteristics of Subcutaneous Microcirculation of Human Hand

XI Chenlu, GAO Wanrong*, and ZHANG Yue
Author Affiliations
  • [in Chinese]
  • show less
    References(24)

    [2] [2] STRAIN W D, ADINGUPU D D, SHORE A C. Microcirculation on a large scale: techniques, tactics and relevance of studying the microcirculation in larger population samples[J]. Microcirculation, 2012, 19(1): 37-46.

    [3] [3] KITABATA H, TANAKA A, KUBO T, et al. Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease[J]. American Journal of Cardiology, 2010, 105(12): 1673-1678.

    [4] [4] UEMURA S, ISHIGAMI K, SOEDA T, et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques[J]. European Heart Journal, 2012, 33(1): 78-85.

    [6] [6] ORCHARD T J, STRANDNESS D E. Assessment of peripheral vascular disease in diabetes[J]. Circulation, 1992, 12(9): 18-20.

    [8] [8] ALGENSTAEDT P, SCHAEFER C, BIERMANN T, et al. Microvascular alterations in diabetic mice correlate with level of hyperglycemia[J]. Diabetes, 2003, 52(2): 542-549.

    [9] [9] JAMES M A, TULLETT J, HEMSLEY A G, et al. Effects of aging and hypertension on the microcirculation[J]. Hypertension. 2006, 47(5): 968-974.

    [10] [10] DEBBABI H, UZAN L, MOURAD J J, et al. Increased skin capillary density in treated essential hypertensive patients[J]. American Journal of Hypertension, 2006, 19(5): 477-483.

    [11] [11] AELLEN J, DABIRI A, HEIM A, et al. Preserved capillary density of dorsal finger skin in treated hypertensive patients with or without type 2 diabetes[J]. Microcirculation, 2012, 19(6): 554-562.

    [13] [13] ALTINTAS M A, ALTINTAS A A, GUGGENHEIM M, et al. Monitoring of microcirculation in free transferred musculocutaneous latissimus dorsi flaps by confocal laser scanning microscopy--a promising non-invasive methodical approach[J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2008, 63(1): 111-117.

    [15] [15] LIAO L D, LIN C T, SHIH Y Y, et al. Investigation of the cerebral hemodynamic response function in single blood vessels by functional photoacoustic microscopy[J]. Journal of Biomedical Optics, 2012, 17(6): 061210.

    [16] [16] HU S, RAO B, MASLOV K, et al. Label-free photoacoustic ophthalmic angiography[J]. Optics Letters, 2010, 35(1): 1-3.

    [17] [17] ROWLAND K J, YAO J J, WANG L D, et al. Immediate alterations in intestinal oxygen saturation and blood flow after massive small bowel resection as measured by photoacoustic microscopy[J]. Journal of Pediatric Surgery, 2012, 47(6): 1143-1149.

    [18] [18] VAN E P, BISWAS S K, MOENS H J B, et al. Initial results of finger imaging using photoacoustic computed tomography[J]. Journal of Biomedical Optics, 2014, 19(6): 060501.

    [19] [19] CHIU C C, LIU T K, LU W T, et al. A micro-control capture images technology for the finger vein recognition based on adaptive image segmentation[J]. Microsystem Technologies, 2018, 24(10): 1-14.

    [20] [20] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181.

    [21] [21] SWANSON E A, HUANG D, HEE M R, et al. High-speed optical coherence domain reflectometry[J]. Optics Letters, 1992, 17(2): 151-153.

    [22] [22] FERCHER A F, HITZENBERGER C K, KAMP G, et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 1995, 117(1/2): 43-48.

    [24] [24] MELISSA J S, GUILLERMO J T, WANG Y O, et al. Progress in intracoronary optical coherence tomography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 12(4): 706-741.

    [26] [26] QUONDAMATTEO F. Skin and diabetes mellitus: what do we know?[J]. Cell and Tissue Research, 2014, 355(1): 1-21.

    [34] [34] ENFIELD J, JONATHAN E, LEAHY M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)[J]. Biomedical Optics Express, 2011, 2(5): 1184-1193.

    [35] [35] ZAFAR H, ENFIELD J, O’CONNELL M L, et al. Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography[J]. Skin Research and Technology, 2014, 20(2): 141-146.

    [38] [38] HIRANO T, KITAHARA J, TORIYAMA Y, et al. Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy[J]. The British Journal of Ophthalmology, 2019, 103(2): 216-221.

    [39] [39] ALGENSTAEDT P, SCHAEFER C, BIERMANN T, et al. Microvascular alterations in diabetic mice correlate with level of hyperglycemia[J]. Diabetes, 2003, 52(2): 542-549.

    [40] [40] TELLECHEA A, KAFANAS A, LEAL E C, et al. Increased skin inflammation and blood vessel density in human andexperimental diabetes[J]. International Journal of Lower Extremity Wounds, 2013, 12(1): 4-11.

    Tools

    Get Citation

    Copy Citation Text

    XI Chenlu, GAO Wanrong, ZHANG Yue. A Study of Changes in the Characteristics of Subcutaneous Microcirculation of Human Hand[J]. Acta Laser Biology Sinica, 2020, 29(4): 309

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 9, 2020

    Accepted: --

    Published Online: Dec. 30, 2020

    The Author Email: Wanrong GAO (wgao@njust.edu.cn)

    DOI:10.3969/j. issn. 1007-7146. 2020. 04. 004

    Topics