Journal of Infrared and Millimeter Waves, Volume. 39, Issue 4, 473(2020)

Semi-supervised semantic segmentation based on Generative Adversarial Networks for remote sensing images

Yu-Xi LIU, Bo ZHANG, and Bin WANG*
Author Affiliations
  • Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai200433, China
  • show less
    Figures & Tables(11)
    The framework of Generative Adversarial Networks
    The overall framework of the proposed method
    Illustration of the ISPRS 2D Vaihingen Labeling dataset (a) the entire remote sensing image, including near-infrared, red and green bands, (b) partial remote sensing image numbered 2, and (c) corresponding label map and its legend
    Illustration of cropping the entire image
    Illustration of confusion matrix
    Visual comparison of segmentation results among the proposed method and other state-of-the-art models on test set: (a) image for segmentation, (b) ground truth label map, (c) UPB, (d) ETH_C, (e) CAS_Y3, (f) ITC_B2 (g) VNU4, (h) CASZX1, (i) UFMG_3, and (j) the proposed method
    • Table 1. 不同标签样本比例下各部分提升效果比较

      View table
      View in Article

      Table 1. 不同标签样本比例下各部分提升效果比较

      类型比例MethodImp SurfBuildingLow_vegTreeCarOAMean F1

      1Baseline86.392.670.785.669.985.381.0
      +Ladv88.893.975.687.977.687.784.7
      +Ladv_att89.094.175.688.078.488.085.0

      1/4Baseline83.090.762.783.762.082.076.4
      +Ladv86.993.271.786.874.986.282.7
      +Ladv_att87.893.873.287.375.086.883.4
      +Ladv_att+Lsemi87.893.973.887.476.287.283.8
      1/8Baseline80.087.960.181.049.179.171.8
      +Ladv85.591.370.286.069.384.580.5
      +Ladv_att86.492.171.686.672.985.581.9
      +Ladv_att+Lsemi86.792.174.287.073.186.182.6
    • Table 2. 与其它半监督语义分割方法在验证集上的结果对比

      View table
      View in Article

      Table 2. 与其它半监督语义分割方法在验证集上的结果对比

      比例MethodImp SurfBuildingLow_vegTreeCarOAMean F1
      1/4Baseline83.090.762.783.762.082.076.4
      SSGAN[19]83.691.063.984.165.782.977.7
      Semi-SegGAN[17]87.393.373.587.175.786.583.4
      本文方法87.893.973.887.476.287.283.8
      1/8Baseline80.087.960.181.049.179.171.8
      SSGAN[19]81.188.362.582.054.381.673.6
      Semi-SegGAN[17]85.991.570.886.172.384.981.3
      本文方法86.792.174.287.073.186.182.6
    • Table 3. 超参数、和取值分析

      View table
      View in Article

      Table 3. 超参数、和取值分析

      λadvλsemiTsemiOAMean F1
      0.010N/A85.581.9
      0.010.010.285.682.0
      0.010.10.286.182.6
      0.010.20.285.882.3
      0.010.10.185.782.1
      0.010.10.286.182.6
      0.010.10.385.982.4
      0.0010.10.285.481.8
      0.010.10.286.182.6
      0.10.10.284.980.9
    • Table 4. 超参数取值分析

      View table
      View in Article

      Table 4. 超参数取值分析

      γOAMean F1
      085.181.6
      0.585.381.8
      186.182.6
      285.582.0
      585.581.8
    • Table 5. 与其它性能优异方法的测试集结果对比

      View table
      View in Article

      Table 5. 与其它性能优异方法的测试集结果对比

      MethodImp SurfBuildingLow_vegTreeCarOAMean F1
      UPB[9]87.589.377.385.877.185.183.4
      ETH_C[25]87.292.077.587.154.485.979.6
      CAS_Y3[6]89.691.582.088.368.487.884.0
      ITC_B2[7]90.193.582.188.377.188.486.2
      VNU4[26]91.293.681.588.577.789.086.5
      CASZX1[27]91.393.981.988.377.689.086.6
      UFMG_3[28]90.794.382.588.577.489.086.7
      所提议方法92.795.184.389.486.290.689.5
    Tools

    Get Citation

    Copy Citation Text

    Yu-Xi LIU, Bo ZHANG, Bin WANG. Semi-supervised semantic segmentation based on Generative Adversarial Networks for remote sensing images[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 473

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing Technology and Application

    Received: Oct. 8, 2019

    Accepted: --

    Published Online: Sep. 17, 2020

    The Author Email: Bin WANG (wangbin@fudan.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2020.04.012

    Topics