Acta Optica Sinica, Volume. 33, Issue 8, 830001(2013)
Experimental Study of the Photochemical Reaction in the Smog Chamber Using a Chernin Multipass Cell
[1] [1] L Du, Y Xu, M Ge, et al.. Rate constant for the reaction of ozone with diethyl sulfide [J]. Atmos Environ,2007, 41(35): 7434-7439.
[2] [2] G Pan, C Hu, Z Wang, et al.. Direct detection of isoprene photooxidation products by using synchrotron radiation photoionization mass spectrometry [J]. Rapid Commun Mass Spectrom, 2012, 26(2): 189-194.
[3] [3] M Huang, W Zhang, Z Wang, et al.. Theoretical investigation on the detailed mechanism of the OH-initiated atmospheric photooxidation of oxylene [J]. International J Quantum Chemistry, 2008, 108(5): 954-966.
[4] [4] Y Gai, M Ge, W Wang. Kinetics of the gas-phase reactions of some unsaturated alcohols with Cl atoms and O3 [J]. Atmos Environ, 2011, 45(1): 53-59.
[5] [5] Hu Gaoshuo, Xu Yongfu, Jia Long. Smog chamber simulation of atmospheric photochemical reactions of propene and NOx [J]. Acta Chimica Sinica, 2011, 69(14): 1593-1600.
[6] [6] H Takekawa, H Minoura, S Yamazaki. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons [J]. Atmos Environ, 2003, 37(24): 3413-3424.
[7] [7] D R Cocker, R C Flagan, J H Seinfeld. State-of-the-art chamber facility for studying atmospheric aerosol chemistry [J]. Environ Sci Technol, 2001, 35(12): 2594-2601.
[8] [8] S Wu, Z Lu, J Hao. Construction and characterization of an atmospheric simulation smog chamber [J]. Advances in Atmospheric Sciences, 2007, 24(2): 250-258.
[11] [11] N Hao, B Zhou, D Chen, et al.. Observations of nitrous acid and its relative humidity dependence in Shanghai [J]. J Environmental Sciences, 2006, 18(5): 910-915.
[12] [12] S M Chernin. Development of optical multipass matrix systems [J]. J Mod Opt, 2001, 48(4): 619-632.
[13] [13] D R Glowacki, A Goddard, P W Seakins. Design and performance of a throughput-matched, zero-geometric-loss, modified three objective multipass matrix system for FTIR spectrometry [J]. Appl Opt, 2007, 46(32): 7872-7883.
[14] [14] Yang Xibin, Zhao Weixiong, Tao Ling, et al.. Measurement of volatile organic compounds in the smog chamber using a Chernin multipass cell [J]. Acta Physica Sinica, 2010, 59(7): 5154-5162.
[15] [15] Zhou Bin, Liu Wenqing, Qi Feng, et al.. Study of concentration retrieving method in differential optical absorption spectroscopy for measuring air pollutants [J]. Acta Physica Sinica, 2001, 50(9): 1818-1823.
[16] [16] K Bogumil, J Orphal, T Homann, et al.. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230-2380 nm region [J]. J Photochem Photobiol A: Chem, 2003, 157(2-3): 167-184.
[17] [17] A Vandaele, P Simon, J Guilmot, et al.. SO2 absorption cross section measurement in the UV using a Fourier transform spectrometer [J]. J Geophys Res, 1994, 99(D12): 25599-25605.
[18] [18] A Bongartz, J Kames, U Schurath, et al.. Experimental determination of HONO mass accommodation coefficients using two different techniques [J]. J Atmos Chem, 1994, 18(2): 149-169.
[19] [19] Wu Tao, Zhao Weixiong, Li Jinsong, et al.. Incoherent broadband cavity enhanced absorption spectroscopy based on LED [J]. Spectroscopy and Spectral Analysis, 2008, 28(11): 2469-2472.
[20] [20] H Edner, P Ragnarson, S Spannare, et al.. Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring [J]. Appl Opt, 1993, 32(3): 327-333.
[21] [21] S Li, W Liu, X Xie, et al.. Effect of water vapor absorption on measurements of atmospheric nitrate radical by LP-DOAS [J]. Chin J Chem Phys, 2008, 21(5): 433-437.
[22] [22] T Wu, W Zhao, W Chen, et al.. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode [J]. Appl Phys B, 2009, 94(1): 85-94.
[23] [23] T Gherman, D S Venables, S Vaughan, et al.. Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2 [J]. Environ Sci Technol, 2008, 42(3): 890-895.
[24] [24] J D Surratt, Y G Gonzalea, A W H Chan, et al.. Organosulfate formation in biogenic secondary organic aerosol [J]. J Phys Chem A, 2008, 112(36): 8345-8378.
[25] [25] Y Iinuma, C Muller, T Berndt, et al.. Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol [J]. Environ Sci Technol, 2007, 41(19): 6678-6683.
[26] [26] S Voigt, J Orphal, K Bogumil, et al.. The temperature dependence (203~293 K) of the absorption cross sections of O3 in the 230~850 nm region measured by Fourier-transform spectroscopy [J]. J Photochem Photobiol A: Chem, 2001, 143(1): 1-9.
[27] [27] J R Odum, T Hoffmann, F Bowman, et al.. Gas/particle partitioning and secondary organic aerosol yields [J]. Environ Sci Technol, 1996, 30(8): 2580-2585.
Get Citation
Copy Citation Text
Cheng Yue, Zhao Weixiong, Hu Changjin, Gu Xuejun, Pei Shixin, Huang Wei, Zhang Weijun. Experimental Study of the Photochemical Reaction in the Smog Chamber Using a Chernin Multipass Cell[J]. Acta Optica Sinica, 2013, 33(8): 830001
Category: Spectroscopy
Received: Feb. 25, 2013
Accepted: --
Published Online: Jul. 9, 2013
The Author Email: Yue Cheng (chengyue@aiofm.ac.cn)