Acta Photonica Sinica, Volume. 50, Issue 2, 44(2021)

Fiber-optic Vibration Signal Recognition Based on BLCD Decomposition and ACO-DBN Network

Yuzhao MA1,2, Ruisong WANG1, and Xinglong XIONG1,2、*
Author Affiliations
  • 1College of Electronic Information and Automation, Civil Aviation University of China, Tianjin300300, China
  • 2Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin300300, China
  • show less
    Figures & Tables(15)
    The overall process of the proposed method
    Mach-Zehnder system sensing schematic diagram
    BLCD-IF screening process
    Deep belief network structure
    Measured climbing signal envelope
    Comparison of decomposition results of different decomposition methods
    Four typical intrusion signals
    Comparison of four characteristic parameters
    Comparison of convergence iteration times of different methods
    • Table 1. Experimental instruments and related parameters

      View table
      View in Article

      Table 1. Experimental instruments and related parameters

      Linewidth of a laserPowerSensor moduleSampling rate of the collectorCollected number
      2 kHz25 mWStandard single mode fiber5×106sample/s100 000
    • Table 2. Comparison of results of different decomposition methods

      View table
      View in Article

      Table 2. Comparison of results of different decomposition methods

      Decomposition methodCorrelation coefficientRoot mean square error
      ISC1ISC2ISC3ISC1ISC2ISC3
      LCD0.751 50.513 30.509 50.041 70.041 00.046 4
      BLCD0.763 00.577 50.522 20.040 10.040 40.044 7
    • Table 3. Comparison of the effects of two filtering ways

      View table
      View in Article

      Table 3. Comparison of the effects of two filtering ways

      Filtering methodSignalSignal to noise/ dBRoot mean quare error
      Add larger ISCRain21.590.002 3
      Climb7.3720.019 5
      Knock6.9550.032 5
      Wind8.1320.028 3
      IFRain27.09 30.001 2
      Climb12.11 60.011 3
      Knock17.29 80.009 9
      Wind9.7320.007 4
    • Table 4. Recognition results before and after feature dimensionality reduction

      View table
      View in Article

      Table 4. Recognition results before and after feature dimensionality reduction

      FeatureRainClimbKnockWindRecognition rateRecognition time
      DirectΦ40%100%90%46.67%69.17%2.64 s
      Fisher93.33%100%100%83.33%94.17%0.83 s
    • Table 5. Comparison of recognition results of different methods

      View table
      View in Article

      Table 5. Comparison of recognition results of different methods

      MethodRainClimbKnockWindRecognition rateRecognition time
      BP76.67%(23/30)96.67%(29/30)17.86%(5/30)100%(30/30)73.48%1.499 s
      ACO-BP90%(27/30)86.67%(26/30)80%(24/30)93.33%(28/30)87.50%1.362 s
      DBN76.67%(23/30)100%(30/30)93.33%(28/30)83.33%(25/30)83.33%1.523 s
      ACO-DBN93.33%(28/30)100%(30/30)93.33%(28/30)96.67%(29/30)95.83%0.715 s
    • Table 6. Comparison of multi-point vibration identification results

      View table
      View in Article

      Table 6. Comparison of multi-point vibration identification results

      Methodknock at one pointknock at two pointsRecognition rateRecognition time
      BP63.33%(19/30)50%(15/30)56.67%1.214 s
      ACO-BP80%(24/30)73.33%(22/30)76.67%1.327 s
      DBN90%(27/30)86.67%(26/30)88.34%1.163 s
      ACO-DBN96.67%(29/30)90%(27/30)93.33%0.815 s
    Tools

    Get Citation

    Copy Citation Text

    Yuzhao MA, Ruisong WANG, Xinglong XIONG. Fiber-optic Vibration Signal Recognition Based on BLCD Decomposition and ACO-DBN Network[J]. Acta Photonica Sinica, 2021, 50(2): 44

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: --

    Accepted: --

    Published Online: Aug. 26, 2021

    The Author Email: Xinglong XIONG (xx_long@126.com)

    DOI:10.3788/gzxb20215002.0206003

    Topics