The Journal of Light Scattering, Volume. 35, Issue 3, 217(2023)

Anapole States in Light Scattering: Theory, Structures, and Applications

TIAN Shuo1,2、*, WANG Junqiao2, GAO Ya2, LIANG Erjun2, and DING Pei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(67)

    [1] [1] BARYSHNIKOVA K V, SMIRNOVA D A, LUK’YANCHUK B S, et al. Optical anapoles: concepts and applications[J]. Advanced Optical Materials, 2019, 7(14): 1801350.

    [2] [2] YANG Y Q, BOZHEVOLNYI S I. Nonradiating anapole states in nanophotonics: from fundamentals to applications[J]. Nanotechnology, 2019, 30(20): 204001.

    [3] [3] SAADABAD R M, HUANG L J, EVLYUKHIN A B, et al. Multifaceted anapole: from physics to applications[J]. Optical Materials Express, 2022, 12(5): 1817-1837.

    [4] [4] ZEL’DOVICH I B. Electromagnetic interaction with parity violation[J]. Soviet Physics JETP, 1958, 6(6): 1184-1186.

    [5] [5] TALEBI N, GUO S R, VAN AKEN P. Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance[J]. Nanophotonics, 2018, 7(1): 93-110.

    [6] [6] WOOD C S, BENNETT S C, CHO D, et al. Measurement of parity nonconservation and an anapole moment in cesium[J]. Science, 1997, 275(5307): 1759-63.

    [7] [7] DUBOVIK V M, CHESHKOV A A. Form-factors and multipoles in electromagnetic interactions[J]. Soviet Physics JETP, 1965, 24.

    [8] [8] DUBOVIK V M, CHESHKOV A A. Multipole expansion in classical and quantum field theory and radiation[J]. Soviet Journal of Particles and Nuclei, 1975, 5(3): 318-337.

    [9] [9] HAXTON W C. Atomic parity violation and the nuclear anapole moment[J]. Science, 1997, 275(5307): 1753.

    [10] [10] CEULEMANS A, CHIBOTARU L F, FOWLER P W. Molecular anapole moments[J]. Physical Review Letters, 1998, 80(9): 1861.

    [11] [11] NAUMOV I I, BELLAICHE L, FU H X. Unusual phase transitions in ferroelectric nanodisks and nanorods[J]. Nature, 2004, 432(7018): 737-740.

    [12] [12] KAELBERER T, FEDOTOV V A, PAPASIMAKIS N, et al. Toroidal dipolar response in a metamaterial[J]. Science, 2010, 330(6010): 1510-1512.

    [13] [13] AHMADIVAND A, SEMMLINGER M, DONG L, et al. Toroidal dipole-enhanced third harmonic generation of deep ultraviolet light using plasmonic meta-atoms[J]. Nano Letters, 2018, 19(1): 605-611.

    [14] [14] HASSANFIROOZI A, HUANG P S, HUANG S H, et al. A toroidal-Fano-resonant metasurface with optimal cross-polarization efficiency and switchable nonlinearity in the near-infrared[J]. Advanced Optical Materials, 2021, 9(21): 2101007.

    [15] [15] HASSANFIROOZI A, CHENG Y C, HUANG S H, et al. Toroidal-assisted generalized Huygens’ sources for highly transmissive plasmonic metasurfaces[J]. Laser & Photonics Reviews, 2022, 16(6): 2100525.

    [16] [16] AHMADIVAND A, GERISLIOGLU B, MANICKAM P, et al. Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors[J]. ACS Sensors, 2017, 2(9): 1359-1368.

    [17] [17] GUPTA M, SRIVASTAVA Y K, SINGH R. A toroidal metamaterial switch[J]. Advanced Materials, 2018, 30(4): 1704845.

    [18] [18] AHMADIVAND A, GERISLIOGLU B, RAMEZANI Z. Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors[J]. Nanoscale, 2019, 11(27): 13108-13116.

    [19] [19] YEZEKYAN T, ZENIN V A, BEERMANN J, et al. Anapole states in gap-surface plasmon resonators[J]. Nano Letters, 2022, 22(15): 6098-6104.

    [20] [20] HERNáNDEZ-SARRIA J J, OLIVEIRA O N, JR., et al. Numerical simulations of double-well optical potentials in all-dielectric nanostructures for manipulation of small nanoparticles in aqueous media[J]. ACS Applied Nano Materials, 2023, 6(2): 1405-1412.

    [21] [21] GRINBLAT G, LI Y, NIELSEN M P, et al. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk[J]. ACS nano, 2017, 11(1): 953-960.

    [22] [22] CUI T J, SMITH D R, LIU R. Metamaterials theory, design, and applications[Z]. Springer. 2010.

    [23] [23] HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10-35.

    [24] [24] FEDOTOV V A, ROGACHEVA A V, SAVINOV V, et al. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials[J]. Scientific Reports, 2013, 3(1): 2967.

    [25] [25] HULST H C V D. Light scattering by small particles[M]. New York: Dover, 1981.

    [26] [26] BORN M, WOLF E. Principles of optics[M]. 7th ed. Cambridge: Cambridge University Press, 1999.

    [29] [29] WU P C, LIAO C Y, SAVINOV V, et al. Optical anapole metamaterial[J]. ACS Nano, 2018, 12(2): 1920-1927.

    [30] [30] ALAEE R, ROCKSTUHL C, FERNANDEZ-CORBATON I. An electromagnetic multipole expansion beyond the long-wavelength approximation[J]. Optics Communications, 2018, 407: 17-21.

    [31] [31] FLAMBAUM V V, MURRAY D W. Anapole moment and nucleon weak interactions[J]. Physical Review C, 1997, 56(3): 1641.

    [32] [32] FAN Y C, WEI Z Y, LI H Q, et al. Low-loss and high-Q planar metamaterial with toroidal moment[J]. Physical Review B, 2013, 87(11): 115417.

    [33] [33] MIROSHNICHENKO A E, EVLYUKHIN A B, YU Y F, et al. Nonradiating anapole modes in dielectric nanoparticles[J]. Nature Communications, 2015, 6: 8069.

    [34] [34] ZENIN V A, EVLYUKHIN A B, NOVIKOV S M, et al. Direct amplitude-phase near-field observation of higher-order anapole states[J]. Nano Letters, 2017, 17(11): 7152-7159.

    [35] [35] WANG R, DAL NEGRO L. Engineering non-radiative anapole modes for broadband absorption enhancement of light[J]. Optics Express, 2016, 24(17): 19048-19062.

    [36] [36] YANG Y Q, ZENIN V A, BOZHEVOLNYI S I. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures[J]. ACS Photonics, 2018, 5(5): 1960-1966.

    [37] [37] LIU S D, WANG Z X, WANG W J, et al. High Q-factor with the excitation of anapole modes in dielectric split nanodisk arrays[J]. Optics Express, 2017, 25(19): 22375-22387.

    [38] [38] ALGORRI J F, ZOGRAFOPOULOS D C, FERRARO A, et al. Ultrahigh-quality factor resonant dielectric metasurfaces based on hollow nanocuboids[J]. Optics Express, 2019, 27(5): 6320-6330.

    [39] [39] TIAN S, WANG J Q, SUN S, et al. Strong field enhancement and hot spot manipulation based on anapole state in Si disk-ring metasurface[J]. Results in Physics, 2023, 49: 106485.

    [40] [40] OSPANOVA A K, STENISHCHEV I V, BASHARIN A A. Anapole mode sustaining silicon metamaterials in visible spectral range[J]. Laser & Photonics Reviews, 2018, 12(7).

    [44] [44] XU L, RAHMANI M, ZANGENEH KAMALI K, et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator[J]. Light: Science & Applications, 2018, 7(1): 44.

    [45] [45] OSPANOVA A K, LABATE G, MATEKOVITS L, et al. Multipolar passive cloaking by nonradiating anapole excitation[J]. Scientific Reports, 2018, 8(1): 12514.

    [46] [46] TUZ V R, EVLYUKHIN A B. Polarization-independent anapole response of a trimer-based dielectric metasurface[J]. Nanophotonics, 2021, 10(17): 4373-4383.

    [47] [47] PAN G M, SHU F Z, WANG L, et al. Plasmonic anapole states of active metamolecules[J]. Photonics Research, 2021, 9(5): 822-828.

    [48] [48] BASHARIN A A, KAFESAKI M, ECONOMOU E N, et al. Dielectric metamaterials with toroidal dipolar response[J]. Physical Review X, 2015, 5(1): 011036.

    [49] [49] GHAHREMANI M, HABIL M K, ZAPATA-RODRIGUEZ C J. Anapole-assisted giant electric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy[J]. Scientific Reports, 2021, 11(1): 10639.

    [50] [50] SUN S, HE M Y, MAO Y, et al. Anapole manipulation in tailored Si nanocubes for near-field enhancement and high Q?factor resonance[J]. ACS Applied Nano Materials, 2022, 5(10): 14833-14840.

    [51] [51] CONTEDUCA D, BRUNETTI G, PITRUZZELLO G, et al. Exploring the limit of multiplexed near-field optical trapping[J]. ACS Photonics, 2021, 8(7): 2060-2066.

    [52] [52] SABRI L, HUANG Q, LIU J N, et al. Design of anapole mode electromagnetic field enhancement structures for biosensing applications[J]. Optics Express, 2019, 27(5): 7196-7212.

    [53] [53] WU J Z, LI Z H, LI M W, et al. Plasmonic refractive index sensing enhanced by anapole modes in metal-dielectric nanostructure array[J]. Journal of Optics, 2021, 23(3): 035002.

    [54] [54] ALGORRI J F, ZOGRAFOPOULOS D C, FERRARO A, et al. Anapole modes in hollow nanocuboid dielectric metasurfaces for refractometric sensing[J]. Nanomaterials, 2018, 9(1): 30591642.

    [55] [55] GRINBLAT G, LI Y, NIELSEN M P, et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode[J]. Nano letters, 2016, 16(7): 4635-4640.

    [56] [56] YIN Y, YAO J, YE L F, et al. Tailoring third harmonic generation from anapole mode in a metal-dielectric hybrid nanoantenna[J]. IEEE Photonics J, 2021, 13(4): 3000106.

    [61] [61] ZHANG T Y, CHE Y, CHEN K, et al. Anapole mediated giant photothermal nonlinearity in nanostructured silicon[J]. Nature Communications, 2020, 11: 3027.

    [62] [62] PANOV A V. Optical Kerr nonlinearity of arrays of all-dielectric high-index nanodisks in the vicinity of the anapole state[J]. Optics Letters, 2020, 45(11): 3071-3074.

    [63] [63] GRINBLAT G, ZHANG H, NIELSEN M P, et al. Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation[J]. Science advances, 2020, 6(34): eabb3123.

    [64] [64] TOTERO GONGORA J S, MIROSHNICHENKO A E, KIVSHAR Y S, et al. Anapole nanolasers for mode-locking and ultrafast pulse generation[J]. Nature Communications, 2017, 8: 15535.

    [65] [65] TRIPATHI A, KIM H R, TONKAEV P, et al. Lasing action from anapole metasurfaces[J]. Nano Letters, 2021, 21(15): 6563-6568.

    [66] [66] MAZZONE V, TOTERO GONGORA J S, FRATALOCCHI A. Near-field coupling and mode competition in multiple anapole systems[J]. Applied Sciences, 2017, 7(6): 542.

    [67] [67] HUANG T C, WANG B X, ZHANG W B, et al. Ultracompact energy transfer in anapole-based metachains[J]. Nano Letters, 2021, 21(14): 6102-6110.

    [68] [68] FENG T H, XU Y, ZHANG W, et al. Ideal magnetic dipole scattering[J]. Physical Review Letters, 2017, 118(17): 173901.

    [69] [69] DU K, LI P, GAO K, et al. Strong coupling between dark plasmon and anapole modes[J]. Journal of Physical Chemistry Letters, 2019, 10(16): 4699-4705.

    [70] [70] LIU S-D, FAN J-L, WANG W-J, et al. Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-j-aggregate heterostructures[J]. Acs Photonics, 2018, 5(4): 1628-1639.

    [71] [71] LI R, HE M Y, WANG J Q, et al. Ultranarrow perfect absorber with linewidth down to 1 nm based on optical anapole mode[J]. Results in Physics, 2022, 37: 105484.

    [72] [72] HE M Y, WANG J Q, SUN S, et al. Improved strong field enhancement and ultranarrow perfect absorption based on anapole mode in slotted Si nanodisk metamaterial[J]. Results in Physics, 2022, 40: 105809.

    [73] [73] TIAN J, LUO H, YANG Y, et al. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5[J]. Nature communications, 2019, 10(1): 396.()

    Tools

    Get Citation

    Copy Citation Text

    TIAN Shuo, WANG Junqiao, GAO Ya, LIANG Erjun, DING Pei. Anapole States in Light Scattering: Theory, Structures, and Applications[J]. The Journal of Light Scattering, 2023, 35(3): 217

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 18, 2023

    Accepted: --

    Published Online: Nov. 17, 2023

    The Author Email: Shuo TIAN (274623170@qq.com)

    DOI:10.13883/j.issn1004-5929.202303003

    Topics