Acta Optica Sinica, Volume. 42, Issue 15, 1529001(2022)
Enhanced Raman Scattering of Silver/Foam Nickel Composite Structure Based on Ultraviolet Induction
[1] Xu B, Lin M M, Yao H L et al. Measurement of hemoglobin concentration of single red blood cell using Raman spectroscopy[J]. Chinese Journal of Lasers, 43, 0115003(2016).
[2] Campion A, Kambhampati P. Surface-enhanced Raman scattering[J]. Chemical Society Reviews, 27, 241-250(1998).
[3] Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures[J]. The Journal of Physical Chemistry B, 106, 9463-9483(2002).
[4] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).
[5] Pitarke J M, Silkin V M, Chulkov E V et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 70, 1-87(2007).
[6] Xing H J, Yin Z H, Zhang J et al. Quantitative analysis of surface-enhanced Raman scattering based on internal standard method[J]. Laser & Optoelectronics Progress, 57, 030002(2020).
[7] Persson B N J, Zhao K, Zhang Z Y. Chemical contribution to surface-enhanced Raman scattering[J]. Physical Review Letters, 96, 207401(2006).
[8] Niaura G, Gaigalas A K, Vilker V L. Surface-enhanced Raman spectroscopy of phosphate anions: adsorption on silver, gold, and copper electrodes[J]. The Journal of Physical Chemistry B, 101, 9250-9262(1997).
[9] Kudelski A. Structures of monolayers formed from different HS—(CH2)2—X thiols on gold, silver and copper: comparitive studies by surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy, 34, 853-862(2003).
[10] Zhang X L, Zhu Y, Ding Y M et al. TiO2/graphene/Ag composite structure for surface-enhanced Raman scattering[J]. Spectroscopy and Spectral Analysis, 37, 3441-3445(2017).
[11] Sekhar P K, Ramgir N S, Bhansali S. Metal-decorated silica nanowires: an active surface-enhanced Raman substrate for cancer biomarker detection[J]. The Journal of Physical Chemistry C, 112, 1729-1734(2008).
[12] Wang T, Hu X G, Dong S J. Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy[J]. The Journal of Physical Chemistry B, 110, 16930-16936(2006).
[13] Abdelsalam M E, Mahajan S, Bartlett P N et al. SERS at structured palladium and platinum surfaces[J]. Journal of the American Chemical Society, 129, 7399-7406(2007).
[14] Jiao Y, Ryckman J D, Ciesielski P N et al. Patterned nanoporous gold as an effective SERS template[J]. Nanotechnology, 22, 295302(2011).
[15] Chen L M, Liu Y N. Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions[J]. ACS Applied Materials & Interfaces, 3, 3091-3096(2011).
[16] Sun Y H, Liu K, Miao J et al. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes[J]. Nano Letters, 10, 1747-1753(2010).
[17] Lopez-Ramirez M R, Guerrini L, Garcia-Ramos J V et al. Vibrational analysis of herbicide diquat: a normal Raman and SERS study on Ag nanoparticles[J]. Vibrational Spectroscopy, 48, 58-64(2008).
[18] Lee S Y, Ganbold E O, Choo J et al. Detection of melamine in powdered milk using surface-enhanced Raman scattering with no pretreatment[J]. Analytical Letters, 43, 2135-2141(2010).
[19] Demeritte T, Kanchanapally R, Fan Z et al. Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid[J]. The Analyst, 137, 5041-5045(2012).
[20] Das G, Mecarini F, Gentile F et al. Nano-patterned SERS substrate: application for protein analysis vs. temperature[J]. Biosensors and Bioelectronics, 24, 1693-1699(2009).
[21] Chen J M, Huang Y J, Kannan P et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables[J]. Analytical Chemistry, 88, 2149-2155(2016).
[22] Yang L L, Yan B, Premasiri W R et al. Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates[J]. Advanced Functional Materials, 20, 2619-2628(2010).
[23] Yamamoto Y S, Ozaki Y, Itoh T. Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 21, 81-104(2014).
[24] Sivashanmugan K, Lee H, Syu C H et al. Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the detection of pesticides residue[J]. Journal of the Taiwan Institute of Chemical Engineers, 75, 287-291(2017).
[25] Mu T T, Wang S N, Li T S et al. Detection of pesticide residues using nano-SERS chip and a smartphone-based Raman sensor[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 18123038(2019).
[26] Gong T C, Zhu Y, Zhang J et al. Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene[J]. Carbon, 87, 385-394(2015).
[27] Liu X F, Ma J M, Jiang P F et al. Large-scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity[J]. ACS Applied Materials & Interfaces, 12, 45332-45341(2020).
[28] Li C H, Xu S C, Yu J et al. Local hot charge density regulation: vibration-free pyroelectric nanogenerator for effectively enhancing catalysis and in situ surface enhanced Raman scattering monitoring[J]. Nano Energy, 81, 105585(2021).
[29] Zhang C, Li C H, Yu J et al. SERS activated platform with three-dimensional hot spots and tunable nanometer gap[J]. Sensors and Actuators B: Chemical, 258, 163-171(2018).
[30] Zhang J, Zhang P Y, Ding Y M et al. Ag-Cu nanoparticles encaptured by graphene with magnetron sputtering and CVD for surface-enhanced Raman scattering[J]. Plasmonics, 11, 1495-1504(2016).
[31] Liu S G, Yin J, Zheng Y M et al. Flexible SERS substrates-based in situ method for rapid detection of environmental pollutant[J]. Acta Scientiae Circumstantiae, 34, 2157-2162(2014).
[32] Muneer S, Sarfo D K, Ayoko G A et al. Gold-deposited nickel foam as recyclable plasmonic sensor for therapeutic drug monitoring in blood by surface-enhanced Raman spectroscopy[J]. Nanomaterials, 10, 1756(2020).
[33] Zhang C, Zhang J, Zhu Y. Slot-waveguide coupled nanostructure enhanced Raman spectroscopy[J]. Acta Optica Sinica, 40, 0313001(2020).
[34] Liu S J, Wang R, Kong X M et al. Fabrication of plasmonic absorbent cotton as SERS substrate for adsorption and detection of harmful ingredients in food[J]. Spectroscopy and Spectral Analysis, 40, 183-184(2020).
[35] Vu T D, Duy P K, Chung H. Nickel foam-caged Ag-Au bimetallic nanostructure as a highly rugged and durable SERS substrate[J]. Sensors and Actuators B: Chemical, 282, 535-540(2019).
[36] Liu R C, Zha Z P, Li C et al. Coupling of multiple plasma polarization modes in particles-multilayer film system for surface-enhanced Raman scattering[J]. APL Photonics, 6, 036104(2021).
[37] Xu Y, Kutsanedzie F Y H, Hassan M et al. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food[J]. Food Chemistry, 315, 126300(2020).
[38] Cheng M Z, Zhang J, Bao D et al. Gold surface plasmon crystal structure based-on polystyrene template for biosensor application[J]. Electrophoresis, 40, 1135-1139(2019).
Get Citation
Copy Citation Text
Hongxian Chen, Zhimou Tang, Jie Zhang. Enhanced Raman Scattering of Silver/Foam Nickel Composite Structure Based on Ultraviolet Induction[J]. Acta Optica Sinica, 2022, 42(15): 1529001
Category: Scattering
Received: Dec. 9, 2021
Accepted: Feb. 28, 2022
Published Online: Aug. 4, 2022
The Author Email: Zhang Jie (zhangjie@cqu.edu.cn)