Acta Photonica Sinica, Volume. 52, Issue 4, 0410002(2023)

Improved Faster-RCNN Based on Multi Feature Scale Fusion for Automatic Detection of Microaneurysms in Retina

Weiwei GAO1、*, Yile YANG1, Yu FANG1, Bo FAN1, and Nan SONG2
Author Affiliations
  • 1Institute of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • 2Department of Ophthalmology, Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai 200031, China
  • show less
    References(29)

    [1] SILVA P S, EIRAMI H, BARHAM R et al. Hemorrhage and/or microaneurysm severity and count in ultrawide field images and early treatment diabetic retinopathy study photography[J]. Ophthalmology, 124, 970-975(2017).

    [2] FLEMING A D, PHILIP S, GOATMAN K A et al. Automated microaneurysm detection using local contrast normalization and local vessel detection[J]. IEEE Transactions on Medical Imaging, 25, 1223-1245(2006).

    [3] WONG T Y, SUN J, KAWASAKI R et al. Guidelines on diabetic eye care: the Int′l council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource setting[J]. Ophthalmology, 125, 1608-1622(2018).

    [4] SHAO Yi, ZHOU Zhao, GE Qianmin. Consensus interpretation on the diagnosis and treatment of diabetic retinopathy and diabetic macular edema by the The Royal College of Ophthalmologists[J]. Recent Advances in Ophthalmology, 601-607(2021).

    [5] CHEN Yixuan, WEN Li, PEI Cunwen et al. Changes of microvascular diameter in non-proliferative diabetic retinopathy[J]. International Eye Science, 21, 1632-1636(2021).

    [6] LAI Xiaobo, LIU Huashan, FANG Chunjie. Retinal microaneurysm extraction by fusing relationship among features[J]. Optics and Precision Engineering, 21, 2187-2194(2013).

    [7] ZHENG Shaohua, PAN Lin, CHEN Jian et al. Grading method for non-proliferative diabetic retinopathy images based on microaneurysms and hemorrhages automatic detection[J]. Chinese Journal of Scientific Instrument, 35, 59-67(2014).

    [8] GAO Weiwei, SHEN Jianxin, WANG Yuliang et al. Efficient and automated detection of microaneurysms from non-dilated fundus images[J]. Chinese Journal of Biomedical Engineering, 31, 839-845(2013).

    [9] ZHANG Xinpeng, WU Jigang, MENG Min et al. Feature-transfer network and local background suppression formicroaneurysm detection[J]. Machine Vision and Applications, 32, 1-15(2020).

    [10] ORLANDO J I, PROKOFYEVA E, FRESNO M D et al. An ensemble deep learning based approach for red lesion detection in fundus images[J]. Computer Methods and Programs in Biomedicine, 153, 115-127(2017).

    [11] WU B, ZHU W, SHI F et al. Automatic detection of microaneurysms in retinal fundus images[J]. Computerized Medical Imaging and Graphics, 55, 106-112(2017).

    [12] YADAV D, KARNA K, GIDDALUR A et al. Microaneurysm detection using color locus detection method[J]. Measurement, 176, 109084(2021).

    [13] DAI L, FANG R, LI H et al. Clinical report guided retinal microaneurysm detection with multi-sieving deep learning[J]. IEEE Transactions on Medical Imaging, 37, 1149-1161(2018).

    [14] ROHAN R A. Film: finding thelocation ofmicroaneurysms ontheretina[J]. Biomedical Engineering Letters, 9, 497-506(2019).

    [15] ZHAO Xuegong, DENG Jiakun, WEI Haoran et al. CNN-based microaneurysm detectionin fundus images[J]. Journal of University of Electronic Science and Technology of China, 50, 915-920(2021).

    [16] XU Y, ZHOU Z, LI X et al. FFU-net: feature fusionu-net for lesion segmentation of diabetic retinopathy[J]. Biomed Research International, 2021, 1-12(2021).

    [17] GUO Song, LI Tao, LI Ning et al. Red lesion segmentation of fundus image with multi-task learning[J]. Journal of Software, 32, 3646-3658(2021).

    [18] FAN Jiawei, ZHANG Ruru, LU Meng et al. Applications of deep learning techniques for diabetic retinal diagnosis[J]. Acta Automatica Sinica, 47, 985-1004(2021).

    [19] GIRSHICK R. Fast R-CNN[C], 1440-1448(2015).

    [20] REN S, HE K, GIRSHICK R et al. Faster R-CNN: towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [21] CAI Z, VASCONCELOS N. Cascade R-CNN:delving into high quality object detection[C], 6154-6162(2018).

    [22] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[C], 2980-2988(2017).

    [23] TIAN Z, SHEN C, CHEN H et al. Fcos: fully convolutional onestage object detection[C], 9627-9636(2019).

    [24] LUO Huilan, CHEN Hongkun. Survey of object detection based on deep learning[J]. Acta Electronica Sinica, 48, 1230-1239(2020).

    [25] CHEN Keqi, ZHU Zhiliang, DENG Xiaoming et al. Deep learning for multi-scale object detection: a survey[J]. Journal of Software, 32, 1201-1227(2021).

    [26] HE K, GKIOXARI G, DOLLAR P et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 42, 386-397(2020).

    [27] ZHANG Cuiwen, ZHANG Changlun, HE Qiang et al. Research on loss function of box regression in object detection[J]. Computer Engineering and Applications, 57, 97-103(2021).

    [28] HUANG Hong, WANG Tao, LI Yuan et al. Cancer pathological segmentation network based on depth feature fusion[J]. Acta Photonica Sinica, 51, 0310001(2022).

    [29] HE Bin, ZHANG Yibo, GONG Jianlin et al. Fast recognition of tomato fruit in greenhouse at night based on improved YOLOv5[J]. Transactions of the Chinese Society of Agricultural Machinery, 53, 201-208(2022).

    Tools

    Get Citation

    Copy Citation Text

    Weiwei GAO, Yile YANG, Yu FANG, Bo FAN, Nan SONG. Improved Faster-RCNN Based on Multi Feature Scale Fusion for Automatic Detection of Microaneurysms in Retina[J]. Acta Photonica Sinica, 2023, 52(4): 0410002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 11, 2022

    Accepted: Nov. 21, 2022

    Published Online: Jun. 21, 2023

    The Author Email: Weiwei GAO (gww03020234@sina.com)

    DOI:10.3788/gzxb20235204.0410002

    Topics