OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 21, Issue 3, 87(2023)
SimulationDesignandExperimentalVerificationof Non-MagneticHeatingFilm
[1] [1] Newman, Zachary L, Tara Drake, et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 2019, 6(5):680-685.
[3] [3] NewmanZL, MauriceVN. High-performance, compactopticalstandard[J]. OpticsLetters, 2021, 46(18):4702-4705.
[6] [6] Preusser J, Knappe S, Kitching J, et al. A microfa-bricated photonic magnetometer[C]. IEEE International FrequencyControlSymposiumJointwiththe22ndEuropeanFrequencyandTimeForum, 2009:1180-1182.
[7] [7] Shah V, Romalis M V. Spin-exchange relaxation-free magnetometry using elliptically polarized light[J]. Physical ReviewA, 2009, 80(1):0134161-0134166.
[8] [8] Li ZM, WakaiRT, WalkerTG. Parametricmodulationof anatomicmagnetometer[J]. AppliedPhysicsLetters, 2006, 89(13):2357553.
[9] [9] Ledbetter M P, Savukov I M, Acosta V M, et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. PhysicalReviewA, 2008, 77:033408.
[13] [13] HHu, ZLiang, XGeng, et al. Designofnon-magnetictemperaturecontrolsystemforatomicvaporcellofatomic magnetometer[J]. JournalofPhysics:ConferenceSeries, 2021, (3):1812.
[14] [14] Martin, Kyle W Nathan, D Lemke, et al. Compact optical atomic clock based on a two-photon transition in rubidium[J]. Phys.Rev.Appl., 2018, (9):014019.
Get Citation
Copy Citation Text
LIDe-wen, SUNZhen, LIJun-qiang. SimulationDesignandExperimentalVerificationof Non-MagneticHeatingFilm[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(3): 87
Category:
Received: Feb. 18, 2023
Accepted: --
Published Online: Dec. 28, 2023
The Author Email:
CSTR:32186.14.