Chinese Journal of Lasers, Volume. 48, Issue 19, 1918003(2021)
Multidimensional Light Field Sensing Based on Metasurfaces
[1] Lü X B, Li Y W, Zhu S S et al. Snapshot spectral polarimetric light field imaging using a single detector[J]. Optics Letters, 45, 6522-6525(2020).
[2] Berry H G, Gabrielse G, Livingston A E. Measurement of the Stokes parameters of light[J]. Applied Optics, 16, 3200-3205(1977).
[3] Azzam R M A. Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four stokes parameters of light[J]. Optica Acta: International Journal of Optics, 29, 685-689(1982).
[4] Tyo J S, Turner T S. Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing[J]. Applied Optics, 40, 1450-1458(2001).
[5] Schaepman M E, Itten K I, Schlaepfer D R et al. APEX: current status of the airborne dispersive pushbroom imaging spectrometer[J]. Sensors, Systems, and Next-Generation Satellites VII, 5234, 202-210(2004).
[6] Zhang K. Design of FTIR imaging spectrometer and spectral features analysis method[J]. Optics & Optoelectronic Technology, 16, 69-74(2018).
[7] Zheng Z Z, Yang Z, Qin Y T et al. Structure analysis and experiment of an Offner-type short-wave infrared imaging spectrometer[J]. Laser & Optoelectronics Progress, 57, 053001(2020).
[8] Gowen A A, O’Donnell C P, Cullen P J et al. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control[J]. Trends in Food Science & Technology, 18, 590-598(2007).
[9] Davis C O. Applications of hyperspectral imaging in the coastal ocean[J]. Imaging Spectrometry VIII, 4816, 33-41(2002).
[10] Yu K, Hu C M. Changes in vegetative coverage of the Hongze Lake national wetland nature reserve: a decade-long assessment using MODIS medium-resolution data[J]. Journal of Applied Remote Sensing, 7, 073589(2013).
[11] Delalieux S, Auwerkerken A, Verstraeten W et al. Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves[J]. Remote Sensing, 1, 858-874(2009).
[12] Lu G L, Fei B W. Medical hyperspectral imaging: a review[J]. Journal of Biomedical Optics, 19, 010901(2014).
[13] Altaweel M. The use of ASTER satellite imagery in archaeological contexts[J]. Archaeological Prospection, 12, 151-166(2005).
[14] Schuler L P, Milne J S, Dell J M et al. MEMS-based microspectrometer technologies for NIR and MIR wavelengths[J]. Journal of Physics D: Applied Physics, 42, 133001(2009).
[15] Malinen J, Rissanen A, Saari H et al. Advances in miniature spectrometer and sensor development[J]. Proceedings of SPIE, 9101, 91010C(2014).
[16] Ebermann M, Neumann N, Hiller K et al. Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review[J]. Proceedings of SPIE, 9760, 97600H(2016).
[17] Crocombe R A. Portable spectroscopy[J]. Applied Spectroscopy, 72, 1701-1751(2018).
[18] McGonigle A J S, Wilkes T C, Pering T D et al. Smartphone spectrometers[J]. Sensors, 18, 223(2018).
[19] Tyo J S, Goldstein D L, Chenault D B et al. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 45, 5453-5469(2006).
[20] Kunnen B, Macdonald C, Doronin A et al. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media[J]. Journal of Biophotonics, 8, 317-323(2015).
[22] Besl P J. Active, optical range imaging sensors[J]. Machine Vision and Applications, 1, 127-152(1988).
[24] Balzer J, Werling S. Principles of shape from specular reflection[J]. Measurement, 43, 1305-1317(2010).
[26] Ganapathi V, Plagemann C, Koller D et al. Real time motion capture using a single time-of-flight camera[C]. //2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA., 755-762(2010).
[27] Smith W A P, Hancock E R. Estimating facial reflectance properties using shape-from-shading[J]. International Journal of Computer Vision, 86, 152-170(2008).
[28] Watanabe M, Nayar S K. Rational filters for passive depth from defocus[J]. International Journal of Computer Vision, 27, 203-225(1998).
[29] Shechtman Y, Sahl S J, Backer A S et al. Optimal point spread function design for 3D imaging[J]. Physical Review Letters, 113, 133902(2014).
[31] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 339, 1232009(2013).
[33] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).
[34] Chen H T, Taylor A J, Yu N. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).
[35] Sun S L, He Q, Hao J M et al. High-efficiency manipulations on electromagnetic waves with metasurfaces[J]. Acta Optica Sinica, 41, 0123003(2021).
[36] Wang G C, Hu B, Zhang Y. Dynamic metasurface design and functional devices[J]. Laser & Optoelectronics Progress, 58, 0900001(2021).
[37] Lee Y, Park M K, Kim S et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics, 4, 1954-1966(2017).
[38] Bartholomew R, Williams C, Khan A et al. Plasmonic nanohole electrodes for active color tunable liquid crystal transmissive pixels[J]. Optics Letters, 42, 2810-2813(2017).
[39] Franklin D, Chen Y, Vazquez-Guardado A et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces[J]. Nature Communications, 6, 7337(2015).
[40] Cao T, Wei C W, Simpson R E et al. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies[J]. Scientific Reports, 4, 3955(2014).
[41] Guo Z Y, Yang X, Shen F et al. Active-tuning and polarization-independent absorber and sensor in the infrared region based on the phase change material of Ge2Sb2Te5 (GST)[J]. Scientific Reports, 8, 12433(2018).
[42] Julian M N, Williams C, Borg S et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging[J]. Optica, 7, 746-754(2020).
[43] Chang A S P, Morton K J, Tan H et al. Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography[J]. IEEE Photonics Technology Letters, 19, 1457-1459(2007).
[44] Wang Y, Landreman P, Schoen D et al. Electrical tuning of phase-change antennas and metasurfaces[J]. Nature Nanotechnology, 16, 667-672(2021).
[45] Zhang Y F, Fowler C, Liang J H et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology, 16, 661-666(2021).
[46] Correia J H, de Graaf G, Kong S H et al. Single-chip CMOS optical microspectrometer[J]. Sensors and Actuators A: Physical, 82, 191-197(2000).
[47] Kong S H, Correia J H, de Graaf G et al. Integrated silicon microspectrometers[J]. IEEE Instrumentation & Measurement Magazine, 4, 34-38(2001).
[48] Laux E, Genet C, Skauli T et al. Plasmonic photon sorters for spectral and polarimetric imaging[J]. Nature Photonics, 2, 161-164(2008).
[49] Xu T, Xu T, Wu Y K et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nature Communications, 1, 59(2010).
[50] Wang A, Dan Y P. Mid-infrared plasmonic multispectral filters[J]. Scientific Reports, 8, 1-7(2018).
[51] Kaplan A F, Xu T, Jay Guo L. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Applied Physics Letters, 99, 143111(2011).
[52] Joo W J, Kyoung J, Esfandyarpour M et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch[J]. Science, 370, 459-463(2020).
[53] Lin H A, Huang C S. Linear variable filter based on a gradient grating period guided-mode resonance filter[J]. IEEE Photonics Technology Letters, 28, 1042-1045(2016).
[54] Tittl A, Leitis A, Liu M K et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).
[55] Ding Y, Magnusson R. Doubly resonant single-layer bandpass optical filters[J]. Optics Letters, 29, 1135-1137(2004).
[56] Rosenblatt D, Sharon A, Friesem A A. Resonant grating waveguide structures[J]. IEEE Journal of Quantum Electronics, 33, 2038-2059(1997).
[57] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 13, 390-396(2019).
[58] Liu Y, Cheng R, Liao L et al. Plasmon resonance enhanced multicolour photodetection by graphene[J]. Nature Communications, 2, 579(2011).
[59] Sobhani A, Knight M W, Wang Y et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J]. Nature Communications, 4, 1643(2013).
[60] Dao T D, Ishii S, Yokoyama T et al. Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors[J]. ACS Photonics, 3, 1271-1278(2016).
[61] Stewart J W, Vella J H, Li W et al. Ultrafast pyroelectric photodetection with on-chip spectral filters[J]. Nature Materials, 19, 158-162(2020).
[62] Takhar D, Laska J N, Wakin M B et al. A new compressive imaging camera architecture using optical-domain compression[J]. Proceedings of SPIE, 6065, 606509(2006).
[63] Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).
[64] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).
[65] Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 24, 118-121(2007).
[66] Zhang S, Dong Y H, Fu H Y et al. A spectral reconstruction algorithm of miniature spectrometer based on sparse optimization and dictionary learning[J]. Sensors, 18, 644(2018).
[67] Song H Y, Zhang W Y, Li H F et al. Review of compact computational spectral information acquisition systems[J]. Frontiers of Information Technology & Electronic Engineering, 21, 1119-1133(2020).
[68] Craig B, Shrestha V R, Meng J et al. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces[J]. Optics Letters, 43, 4481-4484(2018).
[69] Wang Z, Yi S, Chen A et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nature Communications, 10, 1020(2019).
[71] Chang C C, Lee H N. On the estimation of target spectrum for filter-array based spectrometers[J]. Optics Express, 16, 1056-1061(2008).
[73] Ding F, Chen Y T, Bozhevolnyi S I. Metasurface-based polarimeters[J]. Applied Sciences, 8, 594(2018).
[74] Intaravanne Y, Chen X Z. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles[J]. Nanophotonics, 9, 1003-1014(2020).
[75] Shaltout A, Liu J J, Kildishev A et al. Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy[J]. Optica, 2, 860-863(2015).
[76] Wen D D, Yue F Y, Kumar S et al. Metasurface for characterization of the polarization state of light[J]. Optics Express, 23, 10272-10281(2015).
[77] Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters[J]. Optica, 2, 716-723(2015).
[78] Chen W T, Török P, Foreman M R et al. Integrated plasmonic metasurfaces for spectropolarimetry[J]. Nanotechnology, 27, 224002(2016).
[79] Wu P C, Chen J W, Yin C W et al. Visible metasurfaces for on-chip polarimetry[J]. ACS Photonics, 5, 2568-2573(2018).
[80] Ding F, Pors A, Chen Y T et al. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces[J]. ACS Photonics, 4, 943-949(2017).
[81] Rubin N A, D’Aversa G, Chevalier P et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 365, eaax1839(2019).
[82] Liu M Z, Huo P C, Zhu W Q et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface[J]. Nature Communications, 12, 2230(2021).
[83] Feng F, Si G Y, Min C J et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities[J]. Light: Science & Applications, 9, 1-9(2020).
[84] Pors A, Nielsen M G, Bernardin T et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons[J]. Light: Science & Applications, 3, e197(2014).
[85] Pors A, Bozhevolnyi S I. Waveguide metacouplers for in-plane polarimetry[J]. Physical Review Applied, 5, 064015(2016).
[86] Mueller B J P, Leosson K, Capasso F. Ultracompact metasurface in-line polarimeter[J]. Optica, 3, 42-47(2016).
[87] Espinosa-Soria A, Rodríguez-Fortuño F J, Griol A et al. On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light[J]. Nano Letters, 17, 3139-3144(2017).
[88] Lee K, Yun H, Mun S E et al. Ultracompact broadband plasmonic polarimeter[J]. Laser & Photonics Reviews, 12, 1700297(2018).
[89] Wei S W, Yang Z Y, Zhao M. Design of ultracompact polarimeters based on dielectric metasurfaces[J]. Optics Letters, 42, 1580-1583(2017).
[90] Arbabi E, Kamali S M, Arbabi A et al. Full-stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 5, 3132-3140(2018).
[91] Guo K, Xu H S, Peng Z Y et al. High-efficiency full-vector polarization analyzer based on GaN metasurface[J]. IEEE Sensors Journal, 19, 3654-3659(2019).
[92] Miyata M, Nakajima M, Hashimoto T. Compound-eye metasurface optics enabling a high-sensitivity, ultra-thin polarization camera[J]. Optics Express, 28, 9996-10014(2020).
[93] Yang Z Y, Wang Z K, Wang Y X et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nature Communications, 9, 4607(2018).
[94] Guo Y H, Zhang S C, Pu M B et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light, Science & Applications, 10, 63(2021).
[95] Jung M, Dutta-Gupta S, Dabidian N et al. Polarimetry using graphene-integrated anisotropic metasurfaces[J]. ACS Photonics, 5, 4283-4288(2018).
[96] Afshinmanesh F, White J S, Cai W S et al. Measurement of the polarization state of light using an integrated plasmonic polarimeter[J]. Nanophotonics, 1, 125-129(2012).
[97] Li W, Coppens Z J, Besteiro L V et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials[J]. Nature Communications, 6, 8379(2015).
[98] Shi X Y, Xiao W, Fan Q Q et al. Circularly polarized light photodetector based on X-shaped chiral metamaterial[J]. IEEE Sensors Journal, 18, 9203-9206(2018).
[99] Li L F, Wang J Z, Kang L et al. Monolithic Full-Stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene-silicon photodetector[J]. ACS Nano, 14, 16634-16642(2020).
[100] Wei J X, Li Y, Wang L et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection[J]. Nature Communications, 11, 6404(2020).
[101] Wei J X, Xu C, Dong B W et al. Mid-infrared semimetal polarization detectors with configurable polarity transition[J]. Nature Photonics, 15, 614-621(2021).
[102] Maguid E, Yulevich I, Yannai M et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light, Science & Applications, 6, e17027(2017).
[103] Chen Y T, Ding F, Coello V et al. On-chip spectropolarimetry by fingerprinting with random surface arrays of nanoparticles[J]. ACS Photonics, 5, 1703-1710(2018).
[104] Rubin N A, Zaidi A, Juhl M et al. Polarization state generation and measurement with a single metasurface[J]. Optics Express, 26, 21455-21478(2018).
[105] Basiri A, Chen X, Bai J et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements[J]. Light, Science & Applications, 8, 78(2019).
[106] Zhang X Q, Yang S M, Yue W S et al. Direct polarization measurement using a multiplexed Pancharatnam-Berry metahologram[J]. Optica, 6, 1190-1198(2019).
[108] Li Z L, Zheng G X, He P G et al. All-silicon nanorod-based Dammann gratings[J]. Optics Letters, 40, 4285-4288(2015).
[109] Yang S, Li C, Liu T M et al. Simple and polarization-independent Dammann grating based on all-dielectric nanorod array[J]. Journal of Optics, 19, 095103(2017).
[110] Li Z, Dai Q, Mehmood M Q et al. Full-space cloud of random points with a scrambling metasurface[J]. Light, Science & Applications, 7, 63(2018).
[111] Song X, Huang L L, Tang C C et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Advanced Optical Materials, 6, 1701181(2018).
[112] Ni Y B, Chen S, Wang Y J et al. Metasurface for structured light projection over 120° field of view[J]. Nano Letters, 20, 6719-6724(2020).
[113] Xie Y Y, Ni P N, Wang Q H et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions[J]. Nature Nanotechnology, 15, 125-130(2020).
[114] Park J, Jeong B G, Kim S I et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nature Nanotechnology, 16, 69-76(2021).
[115] Yin X, Steinle T, Huang L et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light, Science & Applications, 6, e17016(2017).
[116] Holsteen A L, Cihan A F, Brongersma M L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces[J]. Science, 365, 257-260(2019).
[117] Li S Q, Xu X W, Maruthiyodan Veetil R et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 364, 1087-1090(2019).
[118] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).
[119] Wang S, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).
[120] Liu W W, Ma D N, Li Z C et al. Aberration-corrected three-dimensional positioning with a single-shot metalens array[J]. Optica, 7, 1706-1713(2020).
[121] Thompson M A, Lew M D, Badieirostami M et al. Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function[J]. Nano Letters, 10, 211-218(2010).
[122] Conkey D B, Trivedi R P, Pavani S R P et al. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions[J]. Optics Express, 19, 3835-3842(2011).
[123] Jin C Q, Zhang J H, Guo C L. Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging[J]. Nanophotonics, 8, 451-458(2019).
[124] Jin C Q, Afsharnia M, Berlich R et al. Dielectric metasurfaces for distance measurements and three-dimensional imaging[J]. Advanced Photonics, 1, 036001(2019).
[125] Colburn S, Majumdar A. Metasurface generation of paired accelerating and rotating optical beams for passive ranging and scene reconstruction[J]. ACS Photonics, 7, 1529-1536(2020).
[126] Khorasaninejad M, Chen W T, Zhu A Y et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 16, 4595-4600(2016).
[127] Guo Q, Shi Z, Huang Y W et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 22959-22965(2019).
[128] Tan S Y, Yang F, Boominathan V et al. 3D imaging using extreme dispersion in optical metasurfaces[J]. ACS Photonics, 8, 1421-1429(2021).
[129] Sitzmann V, Diamond S, Peng Y F et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging[J]. ACM Transactions on Graphics, 37, 1-13(2018).
[130] Lin Z, Roques-Carmes C, Pestourie R et al. End-to-end nanophotonic inverse design for imaging and polarimetry[J]. Nanophotonics, 10, 1177-1187(2021).
Get Citation
Copy Citation Text
Yibo Ni, Shun Wen, Zicheng Shen, Yuanmu Yang. Multidimensional Light Field Sensing Based on Metasurfaces[J]. Chinese Journal of Lasers, 2021, 48(19): 1918003
Received: Jun. 15, 2021
Accepted: Jul. 28, 2021
Published Online: Sep. 29, 2021
The Author Email: Yang Yuanmu (ymyang@tsinghua.edu.cn)