Chinese Journal of Lasers, Volume. 51, Issue 19, 1901010(2024)
Research Progress in Power Scaling and Wavelength Extension of Raman Fiber Lasers (Invited)
[4] Xiao H, Pan Z Y, Chen Z L et al. 20 kW fiber laser with high beam quality enabled by tapered ytterbium-doped fiber[J]. High Power Laser and Particle Beams, 36, 011001(2024).
[5] Zhai Z Y, Li X X, Zhang Y C et al. Technics of continuous-wave fiber laser cutting of thin-wall metal materials[J]. Infrared and Laser Engineering, 53, 20230569(2024).
[8] Platonov N, Shkurikhin O, Fomin V et al. High-efficient kW-level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000-1030 nm spectral range[J]. Proceedings of SPIE, 11260, 1126003(2020).
[9] Zhou P, Xiao H, Leng J Y et al. Recent development on high-power tandem-pumped fiber laser[J]. Proceedings of SPIE, 10016, 100160M(2016).
[11] Agrawal G P[M]. Stimulated Raman scattering, 297-354(2019).
[12] Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers[J]. Journal of Optics, 19, 023001(2017).
[15] Fan C C, Fu M, Yao T F et al. All-fiber Raman amplifier with output power over 4 kW[J]. Chinese Journal of Lasers, 51, 0616001(2024).
[16] Fan C C, Fu M, Hao X L et al. All-fiber Raman oscillator with 1.8 kW output power[J]. Infrared and Laser Engineering, 53, 20240031(2024).
[17] Xu L, Alam S, Kang Q et al. Raman-shifted wavelength-selectable pulsed fiber laser with high repetition rate and high pulse energy in the visible[J]. Optics Express, 25, 351-356(2017).
[19] Jiao Y D, Jia Z X, Guo X H et al. Progress on mid-infrared glass optical fiber materials and Raman laser source (invited)[J]. Infrared and Laser Engineering, 52, 20230228(2023).
[20] Li H, Huang W, Cui Y L et al. Progress and prospect of fiber lasers operating at 1.7 μm band[J]. Laser & Optoelectronics Progress, 59, 1900001(2022).
[22] Yan F, Jiang H W, Lei Z. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 44, 0201005(2017).
[23] Feng Y[M]. Raman fiber lasers(2017).
[25] Glick Y, Shamir Y, Sintov Y et al. Brightness enhancement with Raman fiber lasers and amplifiers using multi-mode or multi-clad fibers[J]. Optical Fiber Technology, 52, 101955(2019).
[26] Zhou P, Yao T F, Fan C C et al. 50th anniversary of Raman fiber laser: history, progress and prospect (Invited)[J]. Infrared and Laser Engineering, 51, 20220015(2022).
[27] Chernikov S V, Zhu Y, Taylor J R et al. Supercontinuum self-Q-switched ytterbium fiber laser[J]. Optics Letters, 22, 298-300(1997).
[28] Nicholson J W, Taunay T, Monberg E et al. All-in-one 1236-nm Yb/Raman fiber laser[J]. Proceedings of SPIE, 8237, 823733(2012).
[29] Zhang L, Jiang H W, Cui S Z et al. Integrated ytterbium-Raman fiber amplifier[J]. Optics Letters, 39, 1933-1936(2014).
[30] Zhang L, Liu C, Jiang H W et al. Kilowatt Ytterbium-Raman fiber laser[J]. Optics Express, 22, 18483-18489(2014).
[31] Zhang H W, Xiao H, Zhou P et al. High power Yb-Raman combined nonlinear fiber amplifier[J]. Optics Express, 22, 10248-10255(2014).
[32] Zhang H W, Zhou P, Xiao H et al. 1178 nm Yb-Raman amplifier feed by three-tone seed[C], ATu3A.6(536).
[33] Zhang H W, Tao R M, Zhou P et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm[J]. IEEE Photonics Technology Letters, 27, 628-630(2015).
[34] Ma P F, Zhang H W, Huang L et al. Kilowatt-level near-diffraction-limited and linear-polarized ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism[J]. Optics Express, 23, 26499-26508(2015).
[35] Chen Y Z, Xiao H, Xu J M et al. Laser diode-pumped dual-cavity high-power fiber laser emitting at 1150 nm employing hybrid gain[J]. Applied Optics, 55, 3824-3828(2016).
[36] Xiao Q, Yan P, Li D et al. Bidirectional pumped high power Raman fiber laser[J]. Optics Express, 24, 6758-6768(2016).
[37] Wang J M, Li C, Yan D P. High power composite cavity fiber laser oscillator at 1120 nm[J]. Optics Communications, 405, 318-322(2017).
[38] Wang Z H, Xiao Q R, Huang Y S et al. Dual-wavelength bidirectional pumped high-power Raman fiber laser[J]. High Power Laser Science and Engineering, 7, e5(2019).
[39] Song J X, Ma P F, Ren S et al. 2 kW narrow-linewidth Yb-Raman fiber amplifier[J]. Optics Letters, 46, 2404-2407(2021).
[40] Qi T C, Li D, Wang Z H et al. 6.85 kW ytterbium-Raman fiber amplifier based on adjustable Raman threshold method[J]. Journal of Lightwave Technology, 40, 3907-3915(2022).
[42] Song J X, Wu H S, Ren S et al. Comparisons of kilowatt Yb-Raman fiber amplifiers employing a superfluorescent fiber source and fiber oscillator[J]. Optics Express, 29, 22966-22972(2021).
[43] Song J X, Lai W C, Liu W et al. Narrow linewidth Yb-Raman fiber amplifier pumped by a random fiber laser[J]. Proceedings of SPIE, 11763, 1176358(2021).
[44] Song J X, Lai W C, Ma P F et al. Compact and low-cost superfluorescent fiber source assisted narrow linewidth Yb-Raman fiber amplifier[J]. Applied Optics, 60, 2509(2021).
[46] Stolen R H, Ippen E P, Tynes A R. Raman oscillation in glass optical waveguide[J]. Applied Physics Letters, 20, 62-64(1972).
[48] Galeener F L, Mikkelsen J C, Geils R H et al. The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5[J]. Applied Physics Letters, 32, 34-36(1978).
[50] Nilsson J, Sahu J K, Jang J N et al. Cladding-pumped Raman fiber amplifier[C], PD2(2002).
[51] Codemard C A, Dupriez P, Jeong Y et al. High-power continuous-wave cladding-pumped Raman fiber laser[J]. Optics Letters, 31, 2290-2292(2006).
[52] Codemard C A, Ji J, Sahu J K et al. 100-W CW cladding-pumped Raman fiber laser at 1120 nm[J]. Proceedings of SPIE, 7580, 75801N(2010).
[54] Glick Y, Shamir Y, Aviel M et al. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement[J]. Optics Letters, 43, 4755-4758(2018).
[55] Chen Y Z, Yao T F, Xiao H et al. High-power cladding pumped Raman fiber amplifier with a record beam quality[J]. Optics Letters, 45, 2367-2370(2020).
[56] Fan C C, An Y, Li Y et al. Modal dynamics in kilowatt cladding-pumped random distributed feedback Raman fiber laser with brightness enhancement[J]. Journal of Lightwave Technology, 40, 6486-6492(2022).
[57] Baek S H, Roh W B. Single-mode Raman fiber laser based on a multimode fiber[J]. Optics Letters, 29, 153-155(2004).
[58] Emori Y, Tanaka K, Headley C et al. High-power cascaded Raman fiber laser with 41-W output power at 1480-nm band[C](2007).
[59] Feng Y, Taylor L R, Calia D B. 150 W highly-efficient Raman fiber laser[J]. Optics Express, 17, 23678-23683(2009).
[60] Nicholson J W, Yan M F, Wisk P et al. Raman fiber laser with 81 W output power at 1480 nm[J]. Optics Letters, 35, 3069-3071(2010).
[61] Rekas M, Schmidt O, Zimer H et al. Over 200 W average power tunable Raman amplifier based on fused silica step index fiber[J]. Applied Physics B, 107, 711-716(2012).
[62] Zhang H W, Xiao H, Zhou P et al. 119-W monolithic single-mode 1173-nm Raman fiber laser[J]. IEEE Photonics Journal, 5, 1501706(2013).
[64] Glick Y, Shamir Y, Wolf A A et al. Highly efficient all-fiber continuous-wave Raman graded-index fiber laser pumped by a fiber laser[J]. Optics Letters, 43, 1027-1030(2018).
[65] Chen Y Z, Leng J Y, Xiao H et al. High-efficiency all-fiber Raman fiber amplifier with record output power[J]. Laser Physics Letters, 15, 085104(2018).
[66] Chen Y Z, Leng J Y, Xiao H et al. Pure passive fiber enabled highly efficient Raman fiber amplifier with record kilowatt power[J]. IEEE Access, 7, 28334-28339(2019).
[67] Chen Y Z, Yao T F, Huang L J et al. 2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation[J]. Optics Express, 28, 3495-3504(2020).
[69] Chen Y Z, Yao T F, Xiao H et al. 3 kW passive-gain-enabled metalized Raman fiber amplifier with brightness enhancement[J]. Journal of Lightwave Technology, 39, 1785-1790(2021).
[70] Fan C C, Chen Y Z, Yao T F et al. Over 400 W graded-index fiber Raman laser with brightness enhancement[J]. Optics Express, 29, 19441-19449(2021).
[71] Tanaka T P, Yamada S, Sumi M et al. Microbending losses of doubly clad (W-type) optical fibers[J]. Applied Optics, 16, 2391-2394(1977).
[73] Ji J H, Codemard C A, Ibsen M et al. Analysis of the conversion to the first stokes in cladding-pumped fiber Raman amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 129-139(2009).
[74] Sridharan A K, Heebner J E, Messerly M J et al. Brightness enhancement in a high-peak-power cladding-pumped Raman fiber amplifier[J]. Optics Letters, 34, 2234-2236(2009).
[75] Heebner J E, Sridharan A K, Dawson J W et al. High brightness, quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber amplifiers and oscillators[J]. Optics Express, 18, 14705-14716(2010).
[78] Vallee R, Belanger E, Dery B et al. Highly efficient and high-power Raman fiber laser based on broadband chirped fiber Bragg gratings[J]. Journal of Lightwave Technology, 24, 5039-5043(2006).
[79] Bouteiller J C. Spectral modeling of Raman fiber lasers[J]. IEEE Photonics Technology Letters, 15, 1698-1700(2003).
[81] Zhang H W, Huang L, Zhou P et al. More than 400 W random fiber laser with excellent beam quality[J]. Optics Letters, 42, 3347-3350(2017).
[83] Song J X, Ren S, Liu W et al. Temporally stable fiber amplifier pumped random distributed feedback Raman fiber laser with record output power[J]. Optics Letters, 46, 5031-5034(2021).
[85] Chiang K S. Stimulated Raman scattering in a multimode optical fiber: self-focusing or mode competition?[J]. Optics Communications, 95, 235-238(1993).
[86] Russell T H, Willis S M, Crookston M B et al. Stimulated Raman scattering in multi-mode fibers and its application to beam cleanup and combining[J]. Journal of Nonlinear Optical Physics & Materials, 11, 303-316(2002).
[87] Polley A, Ralph S E. Raman amplification in multimode fiber[J]. IEEE Photonics Technology Letters, 19, 218-220(2007).
[88] Terry N B, Alley T G, Russell T H. An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers[J]. Optics Express, 15, 17509-17519(2007).
[89] Terry N B, Engel K, Alley T G et al. Beam quality of the Stokes output of continuous-wave Raman fiber amplifiers using multimode fiber[J]. Journal of the Optical Society of America B, 25, 1430-1436(2008).
[93] Zhang W L, Rao Y J, Zhu J M et al. Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity[J]. Optics Express, 20, 14400-14405(2012).
[94] Zhu J M, Zhang W L, Rao Y J et al. Output characteristics of low-threshold random distributed feedback fiber laser[J]. Chinese Journal of Lasers, 40, 0302007(2013).
[96] Han B, Cheng Q, Tao Y M et al. Spectral manipulations of random fiber lasers: principles, characteristics, and applications[J]. Laser & Photonics Reviews, 18, 2400122(2024).
[97] Ippen E P. Low-power QUASI-cw Raman oscillator[J]. Applied Physics Letters, 16, 303-305(1970).
[98] Lin C, Cohen L G, Stolen R H et al. Near-infrared sources in the 1–1.3 μm region by efficient stimulated Raman emission in glass fibers[J]. Optics Communications, 20, 426-428(1977).
[99] Po H, Snitzer E, Tumminelli R et al. Double clad high brightness Nd fiber laser pumped by GaAlAs phased array[C], PD7(1989).
[101] Dianov E M, Prokhorov A M. Medium-power CW Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1022-1028(2000).
[102] Grubb S G, Strasser T, Cheung W Y et al. High-power 1.48 µm cascaded Raman laser in germanosilicate fibers[C], SaA4(1995).
[103] Dianov E M, Bufetov I A, Bubnov M M et al. Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber[J]. Optics Letters, 25, 402-404(2000).
[104] Rakich P T, Fink Y, Soljačić M. Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers[J]. Optics Letters, 33, 1690-1692(2008).
[107] Lobach I A, Kablukov S I, Babin S A. Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 μm[J]. Optics Letters, 42, 3526-3529(2017).
[109] Balaswamy V, Ramachandran S, Supradeepa V R. High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning[J]. Optics Express, 27, 9725-9732(2019).
[110] Balaswamy V, Aparanji S, Arun S et al. High-power, widely wavelength tunable, grating-free Raman fiber laser based on filtered feedback[J]. Optics Letters, 44, 279-282(2019).
[113] Han B, Dong S S, Liu Y et al. Cascaded random Raman fiber laser with low RIN and wide wavelength tunability[J]. Photonic Sensors, 12, 220414(2022).
[115] Li Y, Yao T F, Fan C C et al. 1.1-1.5 μm waveband high power random vortex beams based on acoustically-induced fiber grating[J]. Acta Optica Sinica, 44, 1026031(2024).
[116] Babin S A. High-brightness all-fiber Raman lasers directly pumped by multimode laser diodes[J]. High Power Laser Science and Engineering, 7, e15(2019).
[117] Babin S A, Zlobina E A, Kablukov S I. Multimode fiber Raman lasers directly pumped by laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1400310(2018).
[118] Babin S A, Dontsova E I, Kablukov S I. Random fiber laser directly pumped by a high-power laser diode[J]. Optics Letters, 38, 3301-3303(2013).
[119] Kablukov S I, Dontsova E I, Zlobina E A et al. An LD-pumped Raman fiber laser operating below 1 μm[J]. Laser Physics Letters, 10, 085103(2013).
[120] Yao T F, Nilsson J. 835 nm fiber Raman laser pulse pumped by a multimode laser diode at 806 nm[J]. Journal of the Optical Society of America B, 31, 882-888(2014).
[121] Glick Y, Fromzel V, Zhang J et al. High power, high efficiency diode pumped Raman fiber laser[J]. Laser Physics Letters, 13, 065101(2016).
[122] Kablukov S I, Zlobina E A, Skvortsov M I et al. Mode selection in a directly diode-pumped Raman fibre laser using FBGs in a graded-index multimode fibre[J]. Quantum Electronics, 46, 1106-1109(2016).
[123] Zlobina E A, Kablukov S I, Skvortsov M I et al. 954 nm Raman fiber laser with multimode laser diode pumping[J]. Laser Physics Letters, 13, 035102(2016).
[124] Zlobina E A, Kablukov S I, Wolf A A et al. Nearly single-mode Raman lasing at 954 nm in a graded-index fiber directly pumped by a multimode laser diode[J]. Optics Letters, 42, 9-12(2017).
[125] Zlobina E A, Kablukov S I, Wolf A A et al. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser[J]. Optics Express, 25, 12581-12587(2017).
[126] Glick Y, Fromzel V, Zhang J et al. High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement[J]. Applied Optics, 56, B97-B102(2017).
[127] Evmenova E A, Kablukov S I, Nemov I N et al. High-efficiency LD-pumped all-fiber Raman laser based on a 100 µm core graded-index fiber[J]. Laser Physics Letters, 15, 095101(2018).
[128] Evmenova E A, Kuznetsov A G, Nemov I N et al. 2nd-order random lasing in a multimode diode-pumped graded-index fiber[J]. Scientific Reports, 8, 17495(2018).
[129] Hong S, Feng Y T, Nilsson J. Off-peak dual-wavelength multimode diode-laser- pumped fiber Raman laser[J]. IEEE Photonics Technology Letters, 30, 1625-1628(2018).
[130] Kuznetsov A G, Kablukov S I, Podivilov E V et al. Brightness enhancement and beam profiles in an LD-pumped graded-index fiber Raman laser[J]. OSA Continuum, 4, 1034(2021).
[131] Yao T F, Fan C C, Xiao H et al. LD-pumped Raman fiber amplifier achieves high-brightness laser output for the first time[J]. Infrared and Laser Engineering, 51, 20220293-2(2022).
[132] Hao X L, Fan C C, Li Y et al. Brightness enhancement on random-distributed-feedback Raman fiber lasers pumped by multimode diodes[J]. High Power Laser Science and Engineering, 12, e29(2024).
[133] Yao T F, Harish A, Sahu J et al. High-power continuous-wave directly-diode-pumped fiber Raman lasers[J]. Applied Sciences, 5, 1323-1336(2015).
[134] Hong S, Feng Y T, Nilsson J. Wide-span multi-wavelength high-power diode-laser pumping of fiber Raman laser[J]. IEEE Photonics Technology Letters, 31, 1995-1998(2019).
[135] Hao X L, Li Y, Fan C C et al. Kilowatt Raman fiber laser directly pumped by spectrally-combined diodes[J]. Journal of Lightwave Technology, 42, 5349-5355(2024).
Get Citation
Copy Citation Text
Tianfu Yao, Chenchen Fan, Xiulu Hao, Yang Li, Shanmin Huang, Hanwei Zhang, Jiangming Xu, Jun Ye, Jinyong Leng, Pu Zhou. Research Progress in Power Scaling and Wavelength Extension of Raman Fiber Lasers (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901010
Category: laser devices and laser physics
Received: Jul. 5, 2024
Accepted: Aug. 26, 2024
Published Online: Oct. 12, 2024
The Author Email: Yao Tianfu (yaotianfumary@163.com)
CSTR:32183.14.CJL241032