Frontiers of Optoelectronics, Volume. 17, Issue 2, 12200(2024)
Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection
[1] [1] Cundiff, S.T., Ye, J.: Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003)
[2] [2] Takamoto, M., Hong, F.L., Higashi, R., Katori, H.: An optical lattice clock. Nature 435(7040), 321–324 (2005)
[3] [3] Picqué, N., H-nsch, T.W.: Frequency comb spectroscopy. Nat.Photonics 13(3), 146–157 (2019). https://doi.org/10.1038/s41566-018-0347-5
[4] [4] Li, J.T., Chang, B., Du, J.T., Tan, T., Geng, Y., Zhou, H., Liang,Y.P., Zhang, H., Yan, G.F., Ma, L.M., Ran, Z.L., Wang, Z.N.,Yao, B.C., Rao, Y.J.: Coherently parallel fiber-optic distributed acoustic sensing using dual Kerr soliton microcombs. Sci. Adv.10(3), eadf8666(2024)
[5] [5] Chang, L., Liu, S., Bowers, J.E.: Integrated optical frequency comb technologies. Nat. Photonics 16(2), 95–108 (2022)
[6] [6] Udem, T.: Optical Frequency Metrology. In: Reference Module in Materials Science and Materials Engineering, Elsevier (2016)
[7] [7] Geng, Y., Zhou, H., Han, X., Cui, W., Zhang, Q., Liu, B., Deng,G., Zhou, Q., Qiu, K.: Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun.13(1), 1070(2022)
[8] [8] Li, Y., An, N., Lu, Z., Wang, Y., Chang, B., Tan, T., Guo, X.,Xu, X., He, J., Xia, H., Wu, Z., Su, Y., Liu, Y., Rao, Y., Soavi,G., Yao, B.: Nonlinear co-generation of graphene plasmons for optoelectronic logic operations. Nat. Commun. 13(1),3138(2022)
[9] [9] Xu, X., Tan, M., Corcoran, B., Wu, J., Boes, A., Nguyen, T.G.,Chu, S.T., Little, B.E., Hicks, D.G., Morandotti, R., Mitchell,A., Moss, D.J.: 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589(7840), 44–51 (2021)
[10] [10] Qin, C., Du, J., Tan, T., Chang, B., Jia, K., Liang, Y., Wang, W.,Guo, Y., Xia, H., Zhu, S., Rao, Y., Xie, Z., Yao, B.: Co‐generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photonics Rev. 17(4), 2200662(2023)
[11] [11] Tan, T., Yuan, Z., Zhang, H., Yan, G., Zhou, S., An, N., Peng,B., Soavi, G., Rao, Y., Yao, B.: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716(2021)
[12] [12] Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361, 640(2018)
[13] [13] Brasch, V., Geiselmann, M., Pfeiffer, M.H.P., Kippenberg, T.J.:Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24(25), 29312–29320(2016)
[14] [14] Zhou, H., Geng, Y., Cui, W., Huang, S.W., Zhou, Q., Qiu, K.,Wei Wong, C.: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci.Appl. 8(1), 50(2019)
[15] [15] Qin, C., Jia, K., Li, Q., Tan, T., Wang, X., Guo, Y., Huang, S.W.,Liu, Y., Zhu, S., Xie, Z., Rao, Y., Yao, B.: Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci. Appl. 9(1), 185(2020)
[16] [16] Hansson, T., Modotto, D., Wabnitz, S.: Dynamics of the modulational instability in microresonator frequency combs. Phys. Rev.A 88(2), 023819(2013)
[17] [17] Chen, R., Shu, H., Shen, B., Chang, L., Xie, W., Liao, W., Tao,Z., Bowers, J.E., Wang, X.: Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics 17(4),306–314 (2023)
[18] [18] Guo, Y., Li, Z., An, N., Guo, Y., Wang, Y., Yuan, Y., Zhang, H.,Tan, T., Wu, C., Peng, B., Soavi, G., Rao, Y., Yao, B.: A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 34(51), e2207777(2022)
[19] [19] Zhang, H., Tan, T., Chen, H.J., Yu, Y., Wang, W., Chang, B.,Liang, Y., Guo, Y., Zhou, H., Xia, H., Gong, Q., Wong, C.W., Rao,Y., Xiao, Y.F., Yao, B.: Soliton microcombs multiplexing using intracavity-stimulated brillouin lasers. Phys. Rev. Lett. 130(15),153802(2023)
[20] [20] An, N., Tan, T., Peng, Z., Qin, C., Yuan, Z., Bi, L., Liao, C.,Wang, Y., Rao, Y., Soavi, G., Yao, B.: Electrically tunable fourwave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Lett. 20(9), 6473–6480 (2020)
[21] [21] Tan, T., Jiang, X., Wang, C., Yao, B., Zhang, H.: 2D material optoelectronics for information functional device applications:status and challenges. Adv. Sci. (Weinh.) 7(11), 2000058(2020)
[22] [22] Torres-Company, V., Castelló-Lurbe, D., Silvestre, E.: Comparative analysis of spectral coherence in microresonator frequency combs. Opt. Express 22(4), 4678–4691 (2014)
[23] [23] Agha, I.H., Okawachi, Y., Gaeta, A.L.: Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt. Express 17(18), 16209–16215 (2009)
[24] [24] Vinod, A.K., Huang, S.W., Yang, J., Yu, M., Kwong, D.L., Wong,C.W.: Frequency microcomb stabilization via dual-microwave control. Commun. Phys. 4(1), 81(2021)
[25] [25] Del’Haye, P., Beha, K., Papp, S.B., Diddams, S.A.: Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112(4), 043905(2014)
[26] [26] Herr, T., Hartinger, K., Riemensberger, J., Wang, C.Y., Gavartin,E., Holzwarth, R., Gorodetsky, M.L., Kippenberg, T.J.: Universal formation dynamics and noise of Kerr-frequency combs in microresonators.Nat. Photonics 6(7), 480–487 (2012)
[27] [27] Li, J., Lee, H., Chen, T., Vahala, K.J.: Low-pump-power, lowphase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109(23), 233901(2012)
[28] [28] Wang, Y., Li, Y., Li, Y., Zhang, H., Liu, Z., Guo, Y., Wang, Z., He,J., Guo, X., Wang, Y., Yao, B.: Noise canceled graphene-microcavity fiber laser sensor for ultrasensitive gas detection. Photon.Res. 11(8), A1(2023)
[29] [29] Mikhailov, S.A., Ziegler, K.: New electromagnetic mode in graphene.Phys. Rev. Lett. 99(1), 016803(2007)
[30] [30] Yao, B., Huang, S.W., Liu, Y., Vinod, A.K., Choi, C., Hoff, M., Li,Y., Yu, M., Feng, Z., Kwong, D.L., Huang, Y., Rao, Y., Duan, X.,Wong, C.W.: Gate-tunable frequency combs in graphene-nitride microresonators. Nature 558(7710), 410–414 (2018)
[31] [31] Lugiato, L.A., Lefever, R.: Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58(21), 2209–2211 (1987)
[32] [32] Fujii, S., Kato, T., Suzuki, R., Hori, A., Tanabe, T.: Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity. J. Opt. Soc. Am. B 35(1),100(2018)
[33] [33] Liu, T., Sun, S., Gao, Y., Wang, S., Chu, Y., Guo, H.: Optical microcombs in whispering gallery mode crystalline resonators with dispersive intermode interactions. Photon. Res. 10(12),2866(2022)
[34] [34] Savchenkov, A.A., Matsko, A.B., Ilchenko, V.S., Maleki, L.:Optical resonators with ten million finesse. Opt. Express 15(11),6768–6773 (2007)
[35] [35] Huang, S.W., Yang, J., Yu, M., McGuyer, B.H., Kwong, D.L.,Zelevinsky, T., Wong, C.W.: A broadband chip-scale optical frequency synthesizer at 2.7 × 10-16 relative uncertainty. Sci. Adv.2(4), e1501489(2016)
Get Citation
Copy Citation Text
Yupei Liang, Mingyu Liu, Fan Tang, Yanhong Guo, Hao Zhang, Shihan Liu, Yanping Yang, Guangming Zhao, Teng Tan, Baicheng Yao. Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection[J]. Frontiers of Optoelectronics, 2024, 17(2): 12200
Category: RESEARCH ARTICLE
Received: Feb. 24, 2024
Accepted: Apr. 1, 2024
Published Online: Aug. 21, 2024
The Author Email: Teng Tan (taurus_tan@uestc.edu.cn)