Journal of Applied Optics, Volume. 43, Issue 1, 52(2022)

Reconstruction method of computational ghost imaging based on non-local generalized total variation

Zonghua JIANG, Xin TIAN, and Jinling YANG
Author Affiliations
  • School of Electronic Information, Wuhan University, Wuhan 430072, China
  • show less
    References(26)

    [1] PITTMAN T B, SHIH Y H, STREKALOV D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).

    [2] STREKALOV D V, SERGIENKO A V, KLYSHKO D N, et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995).

    [3] BENNINK R S, BENTLEY S J, BOYD R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [4] GATTI A, BRAMBILLA E, BACHE M, et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [5] GATTI A, BRAMBILLA E, BACHE M, et al. Correlated imaging, quantum and classical[J]. Physical Review A Atomic Molecular & Optical Physics, 70, 235-238(2004).

    [6] VALENCIA A, SCARCELLI G, D'ANGELO M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [7] ZHANG DA, ZHAI Yanhua, WU Ling'an, et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005).

    [8] GATTI A, BACHE M, MAGATTI D, et al. Coherent imaging with pseudo-thermal incoherent light[J]. Journal of Modern Optics, 53, 739-760(2006).

    [9] SCARCELLI G, BERARDI V, SHIH Y H. Phase-conjugate mirror via two-photon thermal light imaging[J]. Applied Physics Letters, 88, 061106(2006).

    [10] CHENG J, HAN S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004).

    [11] CHAN W L, CHARAN K, TAKHAR D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).

    [12] SHAPIRO J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [13] [13] BROMBERG Y, KATZ O, SILBERBERG Y. Ghost imaging with a single detect[J]. Physical Review A. 2009, 79(5): 053840.

    [14] LONG M, DU B, He C, et al. Region-of-interest detection viasuper pixel-to-pixel saliency analysis for remote sensing image[J]. IEEE Geoscience & Remote Sensing Letters, 13, 1752-1756(2017).

    [15] SUI Liansheng, CHENG Yin, LI Bing, et al. Optical image encryption via high-quality computational ghost imaging using iterative phase retrieval[J]. Laser Physics Letters, 15, 075204-075213(2018).

    [16] SONG Y, HO Y S. High-resolution depth map generator for 3D video applications using time-of-flight cameras[J]. IEEE Transactions on Consumer Electronics, 63, 386-391(2018).

    [17] KATZ O, BROMBERG Y, SILBERBERG Y. Compressiveghost imaging[J]. Physical Review Letters, 95, 131110(2009).

    [21] [21] ZENG Wenbing. Research on underwater longrange crelation imaging technology[D]. Chengdu: University of Electronic Science Technology, 2018.

    [22] BOYD S, PARIKH N, HU E C, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations & Trends in Machine Learning, 3, 1-122(2010).

    [23] TIAN X, ZHANG M, YANG C, et al. FusionNDVI: a computational fusion approach for high-resolution normalized difference vegetation index[J]. IEEE Transactions on Geoscience and Remote Sensing, 99, 1-14(2020).

    [24] RODRIGUEZ P, WOHLBERG B. Efficient minimization method for a generalized total variation functional[J]. IEEE Transactions on Image Processing, 18, 322-332(2009).

    [25] LIU Q, XIONG B, ZHANG M. Adaptive sparse norm and nonlocal total variation methods for image smoothing[J]. Mathematical Problems in Engineering: Theory, Methods and Applications, 22, 426125.1-426125.18(2014).

    [26] FERRI F, MAGATTI D, LUGIATO L. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [27] GUO K, JIANG S, ZHENG G. Multilayer fluorescence imaging on a single-pixel detector[J]. Biomedical Optics Express, 7, 2425(2016).

    [28] GONG W, HAN S. High-resolution far-field ghost imaging via sparsity constraint[J]. Scientific Reports, 5, 9280(2015).

    [29] HU Xuemei, SUO Jinli, YUE Tao, et al. Patch-primitive driven compressive ghost imaging[J]. Optics Express, 23, 11092-11104(2015).

    Tools

    Get Citation

    Copy Citation Text

    Zonghua JIANG, Xin TIAN, Jinling YANG. Reconstruction method of computational ghost imaging based on non-local generalized total variation[J]. Journal of Applied Optics, 2022, 43(1): 52

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: OE INFORMATION ACQUISITION AND PROCESSING

    Received: Aug. 5, 2021

    Accepted: --

    Published Online: Mar. 7, 2022

    The Author Email:

    DOI:10.5768/JAO202243.0102001

    Topics