Chinese Optics, Volume. 12, Issue 6, 1155(2019)

Research progresses of planar super-oscillatory lenses for practical applications

LI Wen-li1,2、* and YU Yi-ting1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(103)

    [1] [1] YAN B,WANG Z B,PARKER A L,et al.. Superlensing microscope objective lens[J]. Applied Optics,2017,56(11): 3142-3147.

    [2] [2] SRITURAVANICH W,PAN L,WANG Y,et al.. Flying plasmonic lens in the near field for high-speed nanolithography[J]. Nature Nanotechnology,2008,3(12): 733-737.

    [3] [3] NI X J,ISHII S,KILDISHEV A V,et al.. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications,2013,2(4): e72.

    [4] [4] HU J T,LIU CH H,REN X CH,et al.. Plasmonic lattice lenses for multiwavelength achromatic focusing[J]. ACS Nano,2016,10(11): 10275-10282.

    [5] [5] WILLIAMS C,MONTELONGO Y,WILKINSON T D. Plasmonic metalens for narrowband dual-focus imaging[J]. Advanced Optical Materials,2017,5(24): 1700811.

    [6] [6] ABBE E. A contribution to the theory of the microscope and the nature of microscopic vision[C]. Proceedings of Bristol Naturalists′ Society, Williams & Northgate,1874: 200-261.

    [7] [7] LORD RAYLEIGH F R S. XII. On the manufacture and theory of diffraction-gratings[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1874,47(310): 81-93.

    [8] [8] LI L,GUO W,YAN Y ZH,et al.. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications,2013,2(9): e104.

    [9] [9] XU J Q,TEHRANI K F,KNER P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy[J]. ACS Nano,2015,9(3): 2917-2925.

    [10] [10] YUE F Y,ZHANG CH M,ZANG X F,et al.. High-resolution grayscale image hidden in a laser beam[J]. Light: Science & Applications,2018,7: 17129.

    [11] [11] ZHU X L,YAN W,LEVY U,et al.. Resonant laser printing of structural colors on high-index dielectric metasurfaces[J]. Science Advances,2017,3(5): e1602487.

    [12] [12] NOBUKAWA T,NOMURA T. Multilayer recording holographic data storage using a varifocal lens generated with a kinoform[J]. Optics Letters,2015,40(23): 5419-5422.

    [13] [13] RAOUX S,WE?NIC W,IELMINI D. Phase change materials and their application to nonvolatile memories[J]. Chemical Reviews,2010,110(1): 240-267.

    [14] [14] SUN J B,LITCHINITSER N M. Toward practical, subwavelength, visible-light photolithography with hyperlens[J]. ACS Nano,2018,12(1): 542-548.

    [15] [15] WANG R,WEI J S,FAN Y T. Chalcogenide phase-change thin films used as grayscale photolithography materials[J]. Optics Express,2014,22(5): 4973-4984.

    [16] [16] LUBECK E,CAI L. Single-cell systems biology by super-resolution imaging and combinatorial labeling[J]. Nature Methods,2012,9(7): 743-748.

    [17] [17] NGERL U V,SIBARITA J B. Special section guest editorial: super-resolution microscopy of neural structure and function[J]. Neurophotonics,2016,3(4): 041801.

    [18] [18] KHORASANINEJAD M,CHEN W T,ZHU A Y,et al.. Multispectral chiral imaging with a metalens[J]. Nano Letters,2016,16(7): 4595-4600.

    [19] [19] ZHANG X T,YAN L SH,GUO Y H,et al.. Enhanced far-field focusing by plasmonic lens under radially polarized beam illumination[J]. Plasmonics,2016,11(1): 109-115.

    [20] [20] SPEKTOR G,DAVID A,GJONAJ B,et al.. Metafocusing by a metaspiral plasmonic lens[J]. Nano Letters,2015,15(9): 5739-5743.

    [21] [21] SHALAEV V M. Optical negative-index metamaterials[J]. Nature Photonics,2007,1(1): 41-48.

    [22] [22] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters,2000,85(18): 3966-3969.

    [23] [23] LIU ZH W,LEE H,XIONG Y,et al.. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science,2007,315(5819): 1686.

    [24] [24] LIU ZH W,STEELE J M,SRITURAVANICH W,et al.. Focusing surface plasmons with a plasmonic lens[J]. Nano Letters,2005,5(9): 1726-1729.

    [25] [25] KHORASANINEJAD M,CHEN W T,DEVLIN R C,et al.. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science,2016,352(6290): 1190-1194.

    [26] [26] ARBABI E,ARBABI A,KAMALI S M,et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications,2018,9(1): 812.

    [27] [27] ARBABI A,HORIE Y,BAGHERI M,et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology,2015,10(11): 937-943.

    [28] [28] SUN H,ZHU Y CH,GAO B,et al.. Polarization-dependent quasi-far-field superfocusing strategy of nanoring-based plasmonic lenses[J]. Nanoscale Research Letters,2017,12(1): 386.

    [29] [29] FERNANDEZ-DOMINGUEZ A I,LIU ZH W,PENDRY J B. Coherent four-fold super-resolution imaging with composite photonic plasmonic structured illumination[J]. ACS Photonics,2015,2(3): 341-348.

    [30] [30] ELEFTHERIADES G V,MARKLEY L,WONG A M H. Sub-wavelength focusing and imaging using shifted-beam and super-oscillation antenna arrays[C]. Proceedings of 2012 15th International Symposium on Antenna Technology and Applied Electromagnetics,IEEE,2012.

    [31] [31] WEN ZH Q,HE Y H,LI Y Y,et al.. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Optics Express,2014,22(18): 22163-22171.

    [32] [32] ROGERS E T F,SAVO S,LINDBERG J,et al.. Super-oscillatory optical needle[J]. Applied Physics Letters,2013,102(3): 031108.

    [33] [33] LIU T,TAN J B,LIU J,et al.. Vectorial design of super-oscillatory lens[J]. Optics Express,2013,21(13): 15090-15101.

    [34] [34] YUAN G H,ROGERS E T F,ZHELUDEV N I. Tailoring optical super-oscillations with metasurfaces[C]. Proceedings of 2016 Conference on Lasers and Electro-Optics,IEEE,2016.

    [35] [35] BERRY M V,POPESCU S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A: Mathematical and General,2006,39(22): 6965-6977.

    [36] [36] HUANG F M,CHEN Y F,DE ABAJO F J G,et al.. Optical super-resolution through super-oscillations[J]. Journal of Optics A: Pure and Applied Optics,2007,9(9): S285-S288.

    [37] [37] HUANG F M,ZHELUDEV N I. Super-resolution without evanescent waves[J]. Nano Letters,2009,9(3): 1249-1254.

    [38] [38] ROGERS E T F,LINDBERG J,ROY T,et al.. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials,2012,11(5): 432-435.

    [39] [39] HUANG K,YE H P,TENG J H,et al.. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews,2014, 8(1): 152-157.

    [40] [40] QIN F,HUANG K,WU J F,et al.. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials,2017,29(8): 1602721.

    [41] [41] POON T C. Digital Holography and Three-dimensional Display: Principles and Applications[M]. Boston: Springer,2006.

    [42] [42] POON T C,MOTAMEDI M. Optical/digital incoherent image processing for extended depth of field[J]. Applied Optics,1987,26(21): 4612-4615.

    [43] [43] YUAN G H,ROGERS E T F,ROY T,et al.. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports,2014,4: 6333.

    [44] [44] QIN F,HUANG K,WU J F,et al.. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports,2015,5: 9977.

    [45] [45] LIU T,WANG T,YANG SH M,et al.. Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces[J]. Optics Communications,2016,372: 118-122.

    [46] [46] CHEN G,WU ZH X,YU A P,et al.. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Scientific Reports,2017,7(1): 4697.

    [47] [47] ZHANG Y H,ZHONG W H,LIU D M,et al.. Creation of sub-diffraction optical needle by nonlinear super-oscillatory lens[C]. Proceedings of 2016 Conference on Lasers and Electro-optics,IEEE,2016.

    [48] [48] ROY T,ROGERS E T F,YUAN G H,et al.. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters,2014,104(23): 231109.

    [49] [49] DIAO J SH,YUAN W ZH,YU Y T,et al.. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Optics Express,2016,24(3): 1924-1933.

    [50] [50] BERRY M V. A note on superoscillations associated with Bessel beams[J]. Journal of Optics,2013,15(4): 044006.

    [51] [51] CHEN W T, HORASANINEJAD M,ZHU A Y,et al.. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light: Science & Applications,2017,6(5): e16259.

    [52] [52] YU W T, JI Z H,DONG D SH,et al.. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews,2016,10(1): 147-152.

    [53] [53] BERTHELOT J,AC'IMOVIC' S S,JUAN M L,et al.. Three-dimensional manipulation with scanning near-field optical nanotweezers[J]. Nature Nanotechnology,2014,9(4): 295-299.

    [54] [54] GAO L,SHAO L,CHEN B CH,et al.. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy[J]. Nature Protocols,2014,9(5): 1083-1101.

    [55] [55] LI M Y,LI W L,LI H Y,et al.. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci[J]. Scientific Reports,2017,7: 1335.

    [56] [56] DE GRACIA P,DORRONSORO C,MARCOS S. Multiple zone multifocal phase designs[J]. Optics Letters,2013,38(18): 3526-3529.

    [57] [57] LALITHAMBIGAI K,ANBARASAN P M,RAJESH K B. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask[J]. Physica Scripta,2014,89(7): 075501.

    [58] [58] VALLEY P,MATHINE D L,DODGE M R,et al.. Tunable-focus flat liquid-crystal diffractive lens[J]. Optics Letters,2010,35(3): 336-338.

    [59] [59] CHOE Y,KIM J W,SHUNG K K,et al.. Ultrasonic microparticle trapping by multi-foci Fresnel lens[C]. Proceedings of 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum,IEEE,2011.

    [60] [60] LI W L,YU Y T,YUAN W ZH. Flexible focusing pattern realization of centimeter-scale planar super-oscillatory lenses in parallel fabrication[J]. Nanoscale,2019,11(1): 311-320.

    [61] [61] ZHOU Y,CHEN R,MA Y G. Design of optical wavelength demultiplexer based on off-axis meta-lens[J]. Optics Letters,2017,42(22): 4716-4719.

    [62] [62] NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications,2013,4: 2807.

    [63] [63] CU-NGUYEN P H,GREWE A,FEBER P,et al.. An imaging spectrometer employing tunable hyperchromatic microlenses[J]. Light: Science & Applications,2015,5(4): e16058.

    [64] [64] ROGERS K S,BOURDAKOS K N,YUAN G H,et al.. Optimising superoscillatory spots for far-field super-resolution imaging[J]. Optics Express,2018,26(7): 8095-8112.

    [65] [65] WANG CH T,TANG D L,WANG Y Q,et al.. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Scientific Reports,2015,5: 18485.

    [66] [66] HAO X,KUANG C F,WANG T T,et al.. Effects of polarization on the de-excitation dark focal spot in STED microscopy[J]. Journal of Optics,2010,12(11): 115707.

    [67] [67] XUE Y,KUANG C F,LI SH,et al.. Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy[J]. Optics Express,2012,20(16): 17653-17666.

    [68] [68] SINGH B K,NAGAR H,ROICHMAN Y,et al.. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams[J]. Light: Science & Applications,2017,6(9): e17050.

    [69] [69] YE H P,WAN CH,HUANG K,et al.. Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light[J]. Optics Letters,2014,39(3): 630-633.

    [70] [70] YU A P,CHEN G,ZHANG ZH H,et al.. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports,2016,6: 38859.

    [71] [71] YUAN G H,VEZZOLI S,ALTUZARRA C,et al.. Quantum super-oscillation of a single photon[J]. Light: Science & Applications,2016,5(8): e16127.

    [72] [72] LIU T,SHEN T,YANG SH M,et al.. Subwavelength focusing by binary multi-annular plates: design theory and experiment[J]. Journal of Optics,2015,17(3): 035610.

    [73] [73] CHEN G,WU ZH X,YU A P,et al.. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Scientific Reports,2016,6: 37776.

    [74] [74] CHEN G,LI Y Y,YU A P,et al.. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Scientific Reports,2016,6: 29068.

    [75] [75] HUANG K,QIN F,LIU H,et al.. Planar diffractive lenses: fundamentals, functionalities, and applications[J]. Advanced Materials,2018,30(26): 1704556.

    [76] [76] BERESNA M,GECEVICˇIUS M,KAZANSKY P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Optical Materials Express,2011,1(4): 783-795.

    [77] [77] YANG J,WANG ZH,WANG F,et al.. Atomically thin optical lenses and gratings[J]. Light: Science & Applications,2016,5(3): e16046.

    [78] [78] LIN H,XU Z Q,QIU CH W,et al.. Atomically thin optical lenses and gratings[J]. Light: Science & Applications,2016,5(3): e16046.

    [79] [79] LIU CH H,ZHENG J J,COLBURN S,et al.. Ultrathin van der Waals metalenses[J]. Nano Letters,2018,18(11): 6961-6966.

    [80] [80] HYUN J,KIM Y T,DOH I,et al.. Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range[J]. Scientific Reports,2018,8(1): 9131.

    [81] [81] LEGARIA S,PACHECO-PE A V,BERUETE M. Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes[J]. Photonics,2018,5(4): 56.

    [82] [82] YUAN G H,ROGERS E T F,ZHELUDEV N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light: Science & Applications,2017,6(9): e17036.

    [83] [83] LI ZH,ZHANG T,WANG Y Q,et al.. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]. Laser & Photonics Reviews,2018,12(10): 1800064.

    [84] [84] AVAYU O,ALMEIDA E,PRIOR Y,et al.. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications,2017,8: 14992.

    [85] [85] ZHOU Y,KRAVCHENKO I I,WANG H,et al.. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Letters,2018,18(12): 7529-7537.

    [86] [86] ZHAO W Q,QIU L R,FENG ZH D. Effect of fabrication errors on superresolution property of a pupil filter[J]. Optics Express,2006,14(16): 7024-7036.

    [87] [87] KOSMEIER S,MAZILU M,BAUMGARTL J,et al.. Enhanced two-point resolution using optical eigenmode optimized pupil functions[J]. Journal of Optics,2011,13(10): 105707.

    [88] [88] LERMAN G M,YANAI A,LEVY U. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light[J]. Nano Letters,2009,9(5): 2139-2143.

    [89] [89] HUANG K,SHI P,CAO G W,et al.. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters,2011,36(6): 888-890.

    [90] [90] LI X P,CAO Y Y,GU M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters,2011,36(13): 2510-2512.

    [91] [91] YUAN G H,ROGERS E T F,ROY T,et al.. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution[J]. Optics Express,2014,22(6): 6428-6437.

    [92] [92] ROY T,ROGERS E T F,ZHELUDEV N I. Sub-wavelength focusing meta-lens[J]. Optics Express,2013,21(6): 7577-7582.

    [93] [93] YUAN G H,ROGERS E T F,ROY T,et al.. Plasmonic super-oscillations and sub-diffraction focusing[C]. Proceedings of 2014 CLEO, Optical Society of America,2014: FTu2K.5.

    [94] [94] HUANG K,LIU H,GARCIA-VIDAL F J,et al.. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications,2015,6: 7059.

    [95] [95] TANG D L,WANG CH T,ZHAO Z Y,et al.. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews,2015,9(6): 713-719.

    [96] [96] NI H B,YUAN G H,SUN L D,et al.. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography[J]. RSC Advances,2018,8(36): 20117-20123.

    [97] [97] HAO CH L,NIE ZH Q,YE H P,et al.. Three-dimensional supercritical resolved light-induced magnetic holography[J]. Science Advances,2017,3(10): e1701398.

    [98] [98] GONG L,LIN J,HAO CH L,et al.. Supercritical focusing coherent anti-Stokes Raman scattering microscopy for high-resolution vibrational imaging[J]. Optics Letters,2018,43(22): 5615-5618.

    [99] [99] KHORASANINEJAD M,AIETA F,KANHAIYA P,et al.. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters,2015,15(8): 5358-5362.

    [100] [100] ARBABI E,ARBABI A,KAMALI S M,et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications,2018,9(1): 812.

    [101] [101] WANG SH M,WU P C,SU V C,et al.. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology,2018,13(3): 227-232.

    [102] [102] PANIAGUA-DOMINGUEZ R,YU Y F,KHAIDAROV E,et al.. A metalens with a near-unity numerical aperture[J]. Nano Letters,2018, 8(3): 2124-2132.

    [103] [103] CHEN W T, HU A Y,SANJEEV V,et al.. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology,2018,13(3): 220-226.

    Tools

    Get Citation

    Copy Citation Text

    LI Wen-li, YU Yi-ting. Research progresses of planar super-oscillatory lenses for practical applications[J]. Chinese Optics, 2019, 12(6): 1155

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Jan. 29, 2019

    Accepted: --

    Published Online: Jan. 19, 2020

    The Author Email: LI Wen-li (Wenlili_nwpu@163.com)

    DOI:10.3788/co.20191206.1155

    Topics