Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1837003(2024)

Hierarchical Matching Multi-Object Tracking Algorithm Based on Pseudo-Depth Information

Peng Hu, Shuguo Pan*, Wang Gao, Ping Wang, and Peng Guo
Author Affiliations
  • School of Instrument Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China
  • show less
    Figures & Tables(10)
    Model structure diagram
    Pseudo depth information acquisition
    Pseudo depth comparison of multiple targets
    Schematic diagram of HDM
    Experimental results of occlusion coefficient. (a) HOTA experimental results on MOT17 validation set; (b) AssA experimental results on MOT17 validation set; (c) IDF1 experimental results on MOT17 validation set; (d) HOTA experimental results on DanceTrack test set; (e) AssA experimental results on DanceTrack test set; (f) IDF1 experimental results on DanceTrack test set
    Tracking results of the DanceTrack data sets. (a) DanceTrack0067; (b) DanceTrack0070
    • Table 1. Evaluation indicators and instructions

      View table

      Table 1. Evaluation indicators and instructions

      Evaluation indicatorIndicator instruction
      HOTA15Unified metric for multi-object tracking,balancing detection,association,and localization accuracy.
      DetAMeasures object detection accuracy.
      AssAAssesses object association accuracy
      MOTATracking accuracy. Calculated by integrating FP,FN,IDS,and other indicators
      IDF1Ratio of correctly identified detections to the average number of true and calculated detections
      FPSNumber of images processed per second
    • Table 2. Experimental results on the MOT17 test set

      View table

      Table 2. Experimental results on the MOT17 test set

      ModelHOTA /%DetA /%AssA /%MOTA /%IDF1 /%FPS /(frame/s)
      FairMOT59.360.958.073.772.313.2
      QDTrack1653.955.652.768.766.38.5
      TransTrack1754.161.647.975.263.57.2
      TraDes1852.755.250.869.163.97.0
      MOTR57.258.955.871.968.4<7.5
      GTR1959.161.657.075.371.511.2
      ByteTrack63.164.562.080.377.317.5
      Proposed65.165.365.281.080.112.3
    • Table 3. Experimental results on the DanceTrack test set

      View table

      Table 3. Experimental results on the DanceTrack test set

      ModelHOTA /%DetA /%AssA /%MOTA /%IDF1 /%FPS /(frame/s)
      FairMOT39.766.723.882.240.813.2
      QDTrack54.280.136.887.750.48.5
      TransTrack45.575.927.588.445.27.2
      TraDes43.374.525.486.241.27.0
      MOTR54.273.540.279.951.5<7.5
      GTR48.072.531.984.750.311.2
      SparseTrack55.578.939.189.658.312.5
      ByteTrack47.771.032.189.653.917.5
      Proposed58.579.043.489.659.812.3
    • Table 4. Results of the ablation experiment on ByteTrack model

      View table

      Table 4. Results of the ablation experiment on ByteTrack model

      ModuleMOT17 validation setDanceTrack test set
      HOTADetAAssAIDF1HOTADetAAssAIDF1
      Original67.966.669.879.447.571.131.953.6
      HDM(IOU)68.866.871.481.056.078.340.158.8
      IOU-D68.566.670.580.053.171.939.459.5
      HDM(IOU)+IOU-D69.466.972.681.958.579.043.459.8
    Tools

    Get Citation

    Copy Citation Text

    Peng Hu, Shuguo Pan, Wang Gao, Ping Wang, Peng Guo. Hierarchical Matching Multi-Object Tracking Algorithm Based on Pseudo-Depth Information[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Dec. 22, 2023

    Accepted: Jan. 26, 2024

    Published Online: Sep. 9, 2024

    The Author Email: Shuguo Pan (psg@seu.edu.cn)

    DOI:10.3788/LOP232725

    CSTR:32186.14.LOP232725

    Topics