Infrared Technology, Volume. 43, Issue 5, 437(2021)
High-resolution Remote Sensing Image Semantic Segmentation Based on GLNet and HRNet
[2] [2] LONG J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[3] [3] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]// Proceedings of International Conference on Learning Representation, 2015: 1-13.
[4] [4] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention, 2015: 234-241.
[5] [5] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1520-1528.
[6] [6] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[7] [7] CHEN L C, Papandreou G, Kokkinos I, et al. Deep Lab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834.
[8] [8] Paszke A, Chaurasia A, Kim S, et al. Enet: A deep neural network architecture for real-time semantic segmentation[J/OL]. arXiv preprint, 2016, https://arxiv.org/abs/1606.02147.
[9] [9] ZHAO H, QI X, SHEN X, et al. Icnet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the European Conference on Computer Vision, 2018: 405-420.
[10] [10] CHEN W, JIANG Z, WANG Z, et al. Collaborative global-local networks for memory-efficient segmentation of ultra-high resolution images[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 8924-8933.
[11] [11] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[12] [12] LIN T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[13] [13] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 5693-5703.
[14] [14] HOU Q, CHENG M M, HU X, et al. Deeply supervised salient object detection with short connections[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3203-3212.
[15] [15] LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[16] [16] Kingma D P, Ba J. Adam: A method for stochastic optimization[J/OL]. arXiv preprint arXiv:1412.6980, 2014.
[17] [17] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
Get Citation
Copy Citation Text
ZHAO Zixuan, WU Jin, ZHU Lei. High-resolution Remote Sensing Image Semantic Segmentation Based on GLNet and HRNet[J]. Infrared Technology, 2021, 43(5): 437