Chinese Optics Letters, Volume. 20, Issue 10, 100007(2022)
Laser control strategies in full-dimensional funneling dynamics: the case of pyrazine [Invited]
[1] G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, X. Zhu. Using coherence to enhance function in chemical and biophysical systems. Nature, 543, 647(2017).
[2] C. Creatore, M. A. Parker, S. Emmott, A. W. Chin. Efficient biologically inspired photocell enhanced by delocalized quantum states. Phys. Rev. Lett., 111, 253601(2013).
[3] M. Cainelli, Y. Tanimura. Exciton transfer in organic photovoltaic cells: a role of local and nonlocal electron–phonon interactions in a donor domain. J. Chem. Phys., 154, 034107(2021).
[4] H.-G. Duan, M. Thorwart. Quantum mechanical wave packet dynamics at a conical intersection with strong vibrational dissipation. J. Phys. Chem. Lett., 7, 382(2016).
[5] C. Arnold, O. Vendrell, R. Welsch, R. Santra. Control of nuclear dynamics through conical intersections and electronic coherences. Phys. Rev. Lett., 120, 123001(2018).
[6] E. Mangaud, B. Lasorne, O. Atabek, M. Desouter-Lecomte. Statistical distributions of the tuning and coupling collective modes at a conical intersection using the hierarchical equations of motion. J. Chem. Phys., 151, 244102(2019).
[7] H. Köppel, D. R. Yarkony, H. Barentzen. The Jahn-Teller Effect: Fundamentals and Implications for Physics and Chemistry(2009).
[8] D. R. Yarkony. Diabolical conical intersections. Rev. Mod. Phys., 68, 985(1996).
[9] D. R. Yarkony. Modern Electronic Structure Theory(1995).
[10] J. D. Roscioli, S. Ghosh, A. M. LaFountain, H. A. Frank, W. F. Beck. Structural tuning of quantum decoherence and coherent energy transfer in photosynthetic light harvesting. J. Phys. Chem. Lett., 9, 5071(2018).
[11] W. Hu, B. Gu, I. Franco. Toward the laser control of electronic decoherence. J. Chem. Phys., 152, 184305(2020).
[12] S. Tomasi, S. Baghbanzadeh, S. Rahimi-Keshari, O. I. Kassal. Coherent and controllable enhancement of light-harvesting efficiency. Phys. Rev. A, 100, 043411(2019).
[13] G. Breuil, E. Mangaud, B. Lasorne, O. Atabek, M. Desouter-Lecomte. Funneling dynamics in a phenylacetylene trimer: coherent excitation of donor excitonic states and their superposition. J. Chem. Phys., 155, 034303(2021).
[14] V. Stert, P. Farmanara, W. Radloff. Electron configuration changes in excited pyrazine molecules analyzed by femtosecond time-resolved photoelectron spectroscopy. J. Chem. Phys., 112, 4460(2000).
[15] A. Raab, G. A. Worth, H.-D. Meyer, L. S. Cederbaum. Molecular dynamics of pyrazine after excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian. J. Chem. Phys., 110, 936(1999).
[16] L. Seidner, G. Stock, A. L. Sobolewski, W. Domcke. Ab initio characterization of the S1–S2 conical intersection in pyrazine and calculation of spectra. J. Chem. Phys., 96, 5298(1992).
[17] G. A. Worth, H.-D. Meyer, L. S. Cederbaum. The effect of a model environment on the S2 absorption spectrum of pyrazine: a wave packet study treating all 24 vibrational modes. J. Chem. Phys., 105, 4412(1996).
[18] C. Woywood, W. Domcke, A. L. Sobolewski, H.-J. Werner. Characterization of the S1–S2 conical intersection in pyrazine using ab initio multiconfiguration self-consistent-field and multireference configuration-interaction methods. J. Chem. Phys., 100, 1400(1994).
[19] I. Thanopulos, X. Li, P. Brumer, M. Shapiro. Time-dependent partitioning theory of the control of radiationless transitions in 24-mode pyrazine. J. Chem. Phys., 137, 064111(2012).
[20] M. Sukharev, T. Seideman. Optimal control approach to suppression of radiationless transitions. Phys. Rev. Lett., 93, 093004(2004).
[21] M. Sukharev, T. Seideman. Optical control of nonradiative decay in polyatomic molecules. Phys. Rev. A., 71, 012509(2005).
[22] P. S. Christopher, M. Shapiro, P. Brumer. Overlapping resonances in the coherent control of radiationless transitions: internal conversion in pyrazine. J. Chem. Phys., 123, 064313(2005).
[23] P. S. Christopher, M. Shapiro, P. Brumer. Quantum control of internal conversion in 24-vibrational-mode pyrazine. J. Chem. Phys., 125, 124310(2006).
[24] P. S. Christopher, M. Shapiro, P. Brumer. Efficient partitioning technique for computing the dynamics of intramolecular processes: radiationless transitions in pyrazine. J. Chem. Phys., 124, 184107(2006).
[25] M. Saab, M. Sala, B. Lasorne, S. Guérin, F. Gatti. Full-dimensional control of the radiationless decay in pyrazine using the dynamic Stark effect. J. Chem. Phys., 141, 134114(2014).
[26] M. Sala, M. Saab, B. Lasorne, F. Gatti, S. Guérin. Laser control of the radiationless decay in pyrazine using the dynamic Stark effect. J. Chem. Phys., 140, 194309(2014).
[27] M. Sala, S. Guérin, F. Gatti. Quantum dynamics of the photostability of pyrazine. J. Chem. Phys., 17, 29518(2015).
[28] L. Wang, H.-D. Meyer, V. May. Femtosecond laser pulse control of multidimensional vibrational dynamics: computational studies on the pyrazine molecule. J. Chem. Phys., 125, 014102(2006).
[29] A. Ferretti, A. Lami, G. Villani. Control of the yield of photophysical/photochemical processes by excitation with properly delayed ultrashort phase-locked light pulses: a model study on the pyrazine S2→ S1 internal conversion. Chem. Phys., 196, 447(1995).
[30] J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, J. L. Herek. Controlling the efficiency of an artificial light-harvesting complex. Proc. Nat. Acad. Sci., 105, 7641(2008).
[31] J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, M. Motzkus. Quantum control of energy flow in light harvesting. Nature, 417, 533(2002).
[32] J. Hauer, T. Buckup, M. Motzkus. Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection. Chem. Phys., 350, 220(2008).
[33] T. Buckup, J. Hauer, J. Voll, R. Vivie-Riedle, M. Motzkus. A general control mechanism of energy flow in the excited state of polyenic biochromophores. Farad. Disc., 153, 213(2011).
[34] G. A. Worth, H.-D. Meyer, L. S. Cederbaum. Relaxation of a system with a conical intersection coupled to a bath: a benchmark 24-dimensional wave packet study treating the environment explicitly. J. Chem. Phys., 109, 3518(1998).
[35] H.-D. Meyer, U. Manthe, L. S. Cederbaum. The multi-configurational time-dependent Hartree approach. J. Chem. Phys., 165, 73(1990).
[36] U. Manthe, H.-D. Meyer, L. S. Cederbaum. Wave-packet dynamics within the multiconfiguration Hartree framework: general aspects and application to NOCl. J. Chem. Phys., 97, 3199(1992).
[37] M. H. Beck, A. Jäckle, G. A. Worth, H.-D. Meyer. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep., 324, 1(2000).
[38] H.-D. Meyer, F. Gatti, G. A. Worth. Multidimensional Quantum Dynamics (MCTDH Theory and Applications(2009).
[40] H. Köppel, W. Domcke, L. S. Cederbaum. Multimode molecular dynamics beyond the Born-Oppenheimer approximation. Adv. Chem. Phys., 57, 59(1984).
[41] R. Schneider, W. Domcke, H. Köppel. Aspects of dissipative electronic and vibrational dynamics of strongly vibronically coupled systems. J. Chem. Phys., 92, 1045(1990).
[42] M. Sala, S. Guérin, F. Gatti. Quantum dynamics of the photostability of pyrazine. Phys. Chem. Chem. Phys., 17, 29518(2015).
[43] E. Narevicius, N. Moiseyev. Non-Hermitian formulation of interference effect in scattering experiments. J. Chem. Phys., 113, 6088(2000).
[44] R. Chamaki, M. Telmini, O. Atabek, E. Charron. Anisotropy control in photoelectron spectra: a coherent two-pulse interference strategy. Phys. Rev. A, 100, 033402(2019).
[45] D. Sugny, A. Keller, O. Atabek, D. Daems, C. M. Dion, S. Guérin, H. R. Jauslin. Reaching optimally oriented molecular states by laser kicks. Phys. Rev. A, 69, 033402(2004).
Get Citation
Copy Citation Text
Samrit Mainali, Fabien Gatti, Osman Atabek, "Laser control strategies in full-dimensional funneling dynamics: the case of pyrazine [Invited]," Chin. Opt. Lett. 20, 100007 (2022)
Special Issue: ULTRAFAST OPTICS: FUNDAMENTALS AND APPLICATIONS
Received: Jul. 30, 2022
Accepted: Sep. 2, 2022
Published Online: Sep. 26, 2022
The Author Email: Fabien Gatti (fabien.gatti@universite-paris-saclay.fr)