Journal of Synthetic Crystals, Volume. 52, Issue 4, 636(2023)
Optimization of Antimony Selenide Thin Film Solar Cells Performance Based on Cesium Chloride Back Contact Treatment
[1] [1] FANG Z M, LIU L, ZHANG Z M, et al. CsPbI2.25Br0.75 solar cells with 15.9% efficiency[J]. Science Bulletin, 2019, 64(8): 507-510.
[2] [2] DUAN Z T, LIANG X Y, FENG Y, et al. Sb2Se3 thin-film solar cells exceeding 10% power conversion efficiency enabled by injection vapor deposition technology[J]. Advanced Materials, 2022, 34(30): 2202969.
[3] [3] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465.
[4] [4] YUAN C C, ZHANG L J, LIU W F, et al. Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application[J]. Solar Energy, 2016, 137: 256-260.
[5] [5] CHEN C, WANG L, GAO L, et al. 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer[J]. ACS Energy Letters, 2017, 2(9): 2125-2132.
[6] [6] LI K H, WANG S Y, CHEN C, et al. 7.5% n-i-p Sb2Se3 solar cells with CuSCN as a hole-transport layer[J]. Journal of Materials Chemistry A, 2019, 7(16): 9665-9672.
[7] [7] CANG Q F, GUO H F, JIA X G, et al. Enhancement in the efficiency of Sb2Se3 solar cells by adding low lattice mismatch CuSbSe2 hole transport layer[J]. Solar Energy, 2020, 199: 19-25.
[8] [8] MA Y Y, YIN Y W, LI G, et al. Aqueous solution processed MoS3 as an eco-friendly hole-transport layer for all-inorganic Sb2Se3 solar cells[J]. Chemical Communications, 2020, 56(96): 15173-15176.
[9] [9] ZHANG J, KONDROTAS R, LU S C, et al. Alternative back contacts for Sb2Se3 solar cells[J]. Solar Energy, 2019, 182: 96-101.
[10] [10] LIU C, SHEN K, LIN D X, et al. Back contact interfacial modification in highly-efficient all-inorganic planar n-i-p Sb2Se3 solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38397-38405.
[11] [11] HOBSON T D C, PHILLIPS L J, HUTTER O S, et al. Isotype heterojunction solar cells using n-type Sb2Se3 thin films[J]. Chemistry of Materials, 2020, 32(6): 2621-2630.
[12] [12] GUO L P, ZHANG B Y, QIN Y, et al. Tunable quasi-one-dimensional ribbon enhanced light absorption in Sb2 Se3 thin-film solar cells grown by close-space sublimation[J]. Solar RRL, 2018, 2(10): 1800128.
[13] [13] JIN X, YUAN Y, JIANG C H, et al. Solution processed NiOx hole-transporting material for all-inorganic planar heterojunction Sb2S3 solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 185: 542-548.
[14] [14] GUO H F, JIA X G, HADKE S H, et al. Highly efficient and thermally stable Sb2Se3 solar cells based on a hexagonal CdS buffer layer by environmentally friendly interface optimization[J]. Journal of Materials Chemistry C, 2020, 8(48): 17194-17201.
[15] [15] LI Y, ZHOU Y, LUO J J, et al. The effect of sodium on antimony selenide thin film solar cells[J]. RSC Advances, 2016, 6(90): 87288-87293.
[16] [16] SHI X Q, ZHANG F, DAI S Y, et al. Nanorod-textured Sb2(S, Se)3 bilayer with enhanced light harvesting and accelerated charge extraction for high-efficiency Sb2(S, Se)3 solar cells[J]. Chemical Engineering Journal, 2022, 437: 135341.
[17] [17] GUO L P, VIJAYARAGHAVAN S N, DUAN X M, et al. Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer[J]. Solar Energy, 2021, 218: 525-531.
[18] [18] RHLE S. Tabulated values of the Shockley-Queisser limit for single junction solar cells[J]. Solar Energy, 2016, 130: 139-147.
Get Citation
Copy Citation Text
ZHAO Cong, GUO Huafei, QIU Jianhua, DING Jianning, YUAN Ningyi. Optimization of Antimony Selenide Thin Film Solar Cells Performance Based on Cesium Chloride Back Contact Treatment[J]. Journal of Synthetic Crystals, 2023, 52(4): 636
Category:
Received: Dec. 28, 2022
Accepted: --
Published Online: Jun. 11, 2023
The Author Email:
CSTR:32186.14.