Laser & Optoelectronics Progress, Volume. 58, Issue 24, 2433002(2021)

Optimized Deep Learning Stereo Matching Algorithm

Jihui Huang, Rongfen Zhang, Yuhong Liu*, Zhixu Chen, and Zipeng Wang
Author Affiliations
  • College of Big Data and Information Engineering, Guizhou University, Guiyang, Guizhou 550025, China
  • show less
    Figures & Tables(10)
    Original network structure
    Network structure proposed in this article
    Attention mechanism
    Cost calculation structure
    Visualization results on KITTI2015 data set. (a) Left view images; (b) PSMNet predicted disparity maps; (c) predicted disparity maps of this article; (d) true disparity maps; (e) error maps
    • Table 1. Specific network structure mentioned

      View table

      Table 1. Specific network structure mentioned

      NetworkLayerSettingOutput
      Feature extractionLayer0_13×3,3212H×12W×32
      Layer0_21×1,3212H×12W×32
      Layer1_x1×1,321×1,3212H×12W×32
      Layer2_x3×3,643×3,64 (4 pairs)14H×14W×64
      Layer3_x1×1,1281×1,12814H×14W×128
      Attention modeChannel, spatial14H×14W×128
      Layer41×1,3214H×14W×32
      Cost volumeCascade14H×14W×18D×64
      3DCNN3DLayer03×3×3,323×3×3,3214H×14W×18D×32
      3DLayer13×3×3,323×3×3,3214H×14W×18D×32
      3DStack1_13×3×3,643×3×3,6418H×18W×116D×64
      3DStack1_23×3×3,643×3×3,64116H×116W×132D×64
      3DStack1_33×3×3,64(deconv)18H×18W×116D×64
      NetworkLayerParameterOutput
      3DCNN3DStack1_43×3×3,32(deconv)14H×14W×18D×32
      3DStack2_13×3×3,643×3×3,6418H×18W×116D×64
      3DStack2_23×3×3,643×3×3,64116H×116W×132D×64
      3DStack2_33×3×3,64(deconv)18H×18W×116D×64
      3DStack2_43×3×3,32(deconv)14H×14W×18D×32
      3DStack3_13×3×3,643×3×3,6418H×18W×116D×64
      3DStack3_23×3×3,643×3×3,64116H×116W×132D×64
      3DStack3_33×3×3,64(deconv)18H×18W×116D×64
      3DStack3_43×3×3,32(deconv)14H×14W×18D×32
      Classify3×3×3,323×3×3,214H×14W×28D×1
      Disparity regressionUpsamplingH×W×D
      RegressionH×W
    • Table 2. Comparison of different network structures

      View table

      Table 2. Comparison of different network structures

      NetworkOptional module
      RESNet simplifiedAttention mechanismd,qepe /pixel
      PSMNet1.09
      Ours1.13
      0.98
      0.83
    • Table 3. Comparison of effects on SceneFlow test set

      View table

      Table 3. Comparison of effects on SceneFlow test set

      Networkepe /pixelNumber of parameters /106
      PSMNet1.095.20
      MC-CNN3.79--
      GC-Net2.513.50
      DispNet1.6842.00
      CRL1.3278.00
      Ours0.832.20
    • Table 4. Comparison on KITTI2015 dataset

      View table

      Table 4. Comparison on KITTI2015 dataset

      Network3px /%Running time /s
      PSMNet2.320.41
      MC-CNN3.8967.00
      GC-Net2.870.90
      DispNet4.340.06
      CRL2.670.47
      Ours2.090.26
    • Table 5. Comparison of hyperparameters on SF-test

      View table

      Table 5. Comparison of hyperparameters on SF-test

      dqepe /pixelTime /sGPU /GB
      110.810.8814.00
      220.830.7611.80
      330.890.629.80
      440.960.498.90
    Tools

    Get Citation

    Copy Citation Text

    Jihui Huang, Rongfen Zhang, Yuhong Liu, Zhixu Chen, Zipeng Wang. Optimized Deep Learning Stereo Matching Algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2433002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Vision, Color, and Visual Optics

    Received: Dec. 14, 2020

    Accepted: Mar. 8, 2021

    Published Online: Dec. 3, 2021

    The Author Email: Yuhong Liu (liuyuhongyx@sina.com)

    DOI:10.3788/LOP202158.2433002

    Topics