Opto-Electronic Engineering, Volume. 45, Issue 1, 170452(2018)
Review of measurement for atmospheric CO2 differential absorption lidar
[1] [1] Ramanathan A K, Mao J P, Abshire J B, et al. Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar[J]. Geophysical Research Letters, 2015, 42(6): 2055–2062.
[2] [2] Koch G J, Barnes B W, Petros M, et al. Coherent differential absorption lidar measurements of CO2[J]. Applied Optics, 2004, 43(26): 5092–5099.
[3] [3] Koch G J, Beyon J Y, Gibert F, et al. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements[J]. Applied Optics, 2008, 47(7): 944–956.
[4] [4] Gibert F, Flamant P H, Bruneau D, et al. Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer[J]. Applied Optics, 2006, 45(18): 4448–4458.
[5] [5] Porcheron F, Gibert A, Jacquin M, et al. High Throughput Screening of amine thermodynamic properties applied to post-combustion CO2 capture process evaluation[J]. Energy Procedia, 2011, 4(1): 15–22.
[6] [6] Gibert F, Edouart D, Cenac C, et al. 2-μm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere[J]. Optics Letters, 2015, 40(13): 3093–3096.
[7] [7] Sakaizawa D, Nagasawa C, Nagai T, et al. Development of a 1.6 microm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile[J]. Applied Optics, 2009, 48(4): 748– 757.
[8] [8] Shibata Y, Nagasawa C, Abo M. Development of 1.6 μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles[J]. Applied Optics, 2017, 56(4):1194– 1201.
[9] [9] Amediek A, Fix A, Wirth M, et al. Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide[J]. Applied Physics B, 2008, 92(2): 295–302.
[10] [10] Amediek A, Ehret G, Fix A, et al. CHARM-F a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions[J]. Applied Optics, 2017, 56(18): 5182–5197.
[11] [11] Singh U N, Yu J R, Petros M, et al. Development of a pulsed 2-micron integrated path differential absorption lidar for CO2 measurement[J]. Proceedings of SPIE, 2013, 8872: 887209.
[12] [12] Singh U N, Yu J R, Petros M, et al. Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurement[J]. Proceedings of SPIE, 2014, 9246: 924602.
[13] [13] Sakaizawa D, Kawakami S, Nakajima M, et al. Ground-based demonstration of a CO2 remote sensor using a 1.57 μm differential laser absorption spectrometer with direct detection[J]. Journal of Applied Remote Sensing, 2010, 4(1): 043548.
[14] [14] Lin Bing, Ismail S, Harrison F W, et al. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO2 column measurements[J]. Applied Optics, 2013, 52(29): 7062–7077.
[15] [15] Campbell J F, Lin B, Nehrir A R. Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements[J]. Applied Optics, 2014, 53(5): 816–829.
[16] [16] Aiuppa A, Fiorani L, Santoro S, et al. New advances in dial-lidar-based remote sensing of the volcanic CO2 flux[J]. Frontiers in Earth Science, 2017, 5: 15.
[17] [17] Michalak A, Miller C, Briwell E, et al. ASCENDS—active sensing of CO2 emissions over nights, days, and seasons (ASCENDS) mission[R]. Technical report. Michigan: University of Michigan in Ann Arbor, 2008.
[18] [18] Abshire J B, Riris H, Allan G R, et al. pulsed airborne Lidar measurements of atmospheric CO2 column absorption[J]. Tellus B, 2010, 62(5): 770–783.
[19] [19] Abshire J B, Riris H, Weaver C J, et al. Airborne meas-urements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar[J]. Applied Optics, 2013, 52(19): 4446–4461.
[20] [20] Ingmann P, Bensi P, Duran Y, et al. A-scope–advanced space carbon and climate observation of planet earth[R]. ESA Report for Assessment, SP-1313/1. ESA, 2008.
[21] [21] Numata K, Chen J R, Wu S T, et al. Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide[J]. Applied Optics, 2011, 50(7): 1047–1054.
[22] [22] Koch G J, Dharamsi A N, Fitzgreald C M, et al. Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of car-bon dioxide[J]. Applied Optics, 2000, 39(21): 3664–3669.
[23] [23] Ambrico P F, Amodeo A, Di Girolamo P, et al. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region[J]. Applied Optics, 2000, 39(36): 6847–6865.
[24] [24] Esquivias I, Consoli A, Krakowski M, et al. High-brightness all semiconductor laser at 1.57 μm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements[J]. Proceedings of SPIE, 2014, 9135: 913516.
[25] [25] Refaat T F, Singh U N, Yu J R, et al. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement[J]. Applied Optics, 2016, 55(15): 4232–4246.
[26] [26] Wagner G A, Plusquellic D F. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 μm[J]. Applied Optics, 2016, 55(23): 6292– 6310.
[27] [27] YU J R, Petros M, Singh U N, et al. An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 385–400.
[28] [28] Reffaat T F, Singh U N, Yu J R, et al. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements[J]. Applied Optics, 2015, 54(6): 1387–1398.
Get Citation
Copy Citation Text
Hong Guanglie, Zhang Huaping, Liu Hao, Hu Yihua. Review of measurement for atmospheric CO2 differential absorption lidar[J]. Opto-Electronic Engineering, 2018, 45(1): 170452
Category:
Received: Aug. 26, 2017
Accepted: --
Published Online: May. 3, 2018
The Author Email: Guanglie Hong (glhong@mail.sitp.ac.cn)