Acta Photonica Sinica, Volume. 51, Issue 8, 0851516(2022)

Doppler Asymmetric Spatial Heterodyne Interferometry for Wind Measurement in Middle and Upper Atmosphere(Invited)

Yang XIAO1,1,1,1, Yutao FENG1,1, Zhenqing WEN1,1,1,1, and Di FU1,1,1,1
Author Affiliations
  • 11Key Laboratory of Spectral Imaging Technology,Xi'an Institute of Optics Precision Mechanic of Chinese Academy of Sciences,Xi'an 710119,China
  • 12University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    References(60)

    [1] ENGLERT C R, BROWN C M, DROB D P. Wind at the top of the atmosphere[C], 132-140(2012).

    [2] SHEPHERD G G. Development of wind measurement systems for future space missions[J]. Acta Astronautica, 115, 206-217(2015).

    [3] MERIWETHER J W. Studies of thermospheric dynamics with a Fabry-Perot interferometer network: a review[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1576-1589(2006).

    [4] YUAN Wei, XU Jiyao, MA Ruiping等. First observation of mesospheric and thermospheric winds by a Fabry-Perot interferometer in China[J]. Chinese Science Bulletin, 55, 3378-3383(2011).

    [5] THUILLIER G, FALIN J L, WACHTEL C. Experimental global model of the exospheric temperature based on measurements from the Fabry-Perot interferometer on board the OGO-6 satellite—discussion of the data and properties of the model[J]. Journal of Atmospheric and Terrestrial Physics, 39, 399-414(1977).

    [6] HAYS P B, KILLEEN T L, KENNEDY B C. The Fabry-Perot interferometer on dynamics explorer[J]. Space Science Instrumentation, 5, 395-416(1981).

    [7] SKINNER W R, HAYS P B, GRASSL H J et al. High-resolution doppler imager on the upper atmosphere research satellite[C], 2266, 281-293(1994).

    [8] KILLEEN T L, SKINNER W R, JOHNSON R M et al. TIMED doppler interferometer (TIDI)[C], 3756, 289-301(1999).

    [9] SHEPHERD G G, THUILLIER G, GAULT W A et al. WINDII, the wind imaging interferometer on the upper atmosphere research satellite[J]. Journal of Geophysical Research: Atmospheres, 98, 10725-10750(1993).

    [10] ENGLERT C R, HARLANDER J M J M, EMMERT J T et al. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH)[J]. Optics Express, 18, 27416-27430(2010).

    [11] ENGLERT C R, HARLANDER J M J M, BROWN C M et al. Coincident thermospheric wind measurements using ground-based Doppler Asymmetric Spatial Heterodyne (DASH) and Fabry-Perot Interferometer (FPI) instruments[J]. Journal of Atmospheric and Solar-terrestrial Physics, 86, 92-98(2012).

    [12] SHEPHERD G G. Doppler michelson interferometry and spatial heterodyne spectroscopy: an approach to stratospheric wind measurement[C], FW1D. 1(2013).

    [13] ENGLERT C R, BROWN C M, MARR K D et al. As-built specifications of MIGHTI-The thermospheric wind and temperature instrument for the NASA ICON mission[C], FTh4B. 2(2016).

    [14] FENG Yutao, YAN Peng, BAI Qinglan. Dual-channel Doppler heterodyne interferometer[P].

    [15] SUN Chen, FENG Yutao, FU Di et al. The phase uncertainty from the fringe contrast of interferogram in Doppler asymmetric spatial heterodyne spectroscopy[J]. Journal of Optics, 23, 115703-115711(2021).

    [16] SUN Chen, FENG Yutao, FU Di等. A propagation of interferogram signal-to-noise (SNR) and phase uncertainty in Doppler asymmetric spatial heterodyne spectrometer[J]. Acta Physica Sinica, 69, 240-247(2020).

    [17] WU Kuijun, FU Di, FENG Yutao. Simulation and application of the emission line O19P18 of O2(a1Δg) day glow near 1.27 μm for wind observation from limb-viewing satellites[J]. Optics Express, 26, 16984-16999(2018).

    [18] LIU Jilin, WEI Daikang, ZHU Yajun. Effective wind and temperature retrieval from Doppler asymmetric spatial heterodyne spectrometer interferograms[J]. Applied Optics, 57, 8829-8836(2018).

    [19] SHEN Jing, XIONG Wei, SHI Hailiang. Absolute phase drift analysis and correction of asymmetric spatial heterodyne interferometer for wind detection[J]. Acta Optica Sinica, 37, 0430003(2017).

    [20] KUANG Yinli, FANG Liang, PENG Xiang. Simulation of Doppler velocity measurement based on Doppler asymmetric space heterodyne spectroscopy[J]. Acta Physica Sinica, 67, 111-118(2018).

    [21] ENGLERT C R, HARLANDER J M J M, BABCOCK D D et al. Doppler Asymmetric Spatial Heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[C], 6303, 272-279(2006).

    [22] ENGLERT C R, BABCOCK D D, HARLANDER J M J M. Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration[J]. Applied Optics, 46, 7297-7307(2007).

    [23] HARLANDER J M J M, ENGLERT C R, MARR K D et al. On the uncertainties in determining fringe phase in Doppler asymmetric spatial heterodyne spectroscopy[J]. Applied Optics, 58, 3613-3619(2019).

    [24] HARLANDER J M, ENGLERT C R. Doppler asymmetric spatial heterodyne spectroscopy[P].

    [25] SHEN Jing, XIONG Wei, SHI Hailiang等. Data processing method of asymmetric spatial heterodyne interferogram for wind measurement[J]. Spectroscopy and Spectral Analysis, 36, 3014-3019(2016).

    [26] CHEN Jiejing, FENG Yutao, HU Bingliang等. Window function optimization in atmospheric wind velocity retrieval with Doppler difference interference spectrometer[J]. Acta Optica Sinic, 37, 92-98(2017).

    [27] LIU J, WEI D, ZHU Y et al. Effective wind and temperature retrieval from Doppler asymmetric spatial heterodyne spectrometer interferograms[J]. Applied Optics, 57, 8829-8835(2018).

    [28] MARR K D, MORROW W H, BROWN C M et al. Calibration lamp design, characterization, and implementation for the Michelson interferometer for global high-resolution thermospheric imaging instrument on the ionospheric connection satellite[J]. Optical Engineering, 58, 054104(2019).

    [29] ENGLERT C R, HARLANDER J M J M, BROWN C M et al. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): instrument design and calibration[J]. Space Science Reviews, 212, 553-584(2017).

    [30] SMITH B W, LAUBSCHER B E, COOKE B J et al. IRISHS: the infrared imaging spatial heterodyne spectrometer: a new pushbroom Fourier transform ultraspectral imager with no moving parts[C], 3698, 501-509(1999).

    [31] ENGLERT C R, BROWN C M, BACH B et al. High-efficiency echelle gratings for MIGHTI, the spatial heterodyne interferometers for the ICON mission[J]. Applied Optics, 56, 2090-2098(2017).

    [32] FENG Yutao, YAN Peng, SUN Jian等. Static two-channel Doppler heterodyne interferometer[P].

    [33] FENG Yutao, BAI Qinglan, SUN Jian等. Dual-channel Doppler heterodyne interferometer[P].

    [34] ENGLERT C R, STEVENS M H, SISKIND D E. Basic principle of Doppler Asymmetric Spatial Heterodyne Spectroscopy (DASH): An innovative concept for measuring winds in planetary atmospheres[J]. Fourier Transform Spectroscopy/ Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest Series (CD), F4hA3(2007).

    [35] FENG Yutao, BAI Qinglan, WANG Yongmei等. Theory and method for designing field-widened prism of spatial heterodyne spectrometer[J]. Acta Optica Sinica, 32, 272-277(2012).

    [36] ENGLERT C R. Spatial heterodyne spectroscopy: an emerging optical technique for heliophysics and beyond[C](2010).

    [37] FEI Xiaoyun, FENG Yutao, BAI Qinglan等. Dual field Doppler heterodyne interferometer[P].

    [38] FEI Xiaoyun. Basic study on a co-path doppler asymmetric spatial heterodyne spectroscopy interferometer with two fields of view for atmospheric wind vector observation form satellite platforms[D](2015).

    [39] WEI D, ZHU Y, LIU J et al. Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance[J]. Optics Express, 28, 19887-19900(2020).

    [40] HARLANDER J M J M, ENGLERT C R. Design of a real-fringe DASH interferometer for observations of thermospheric winds from a small satellite[C], FW1D. 2(2013).

    [41] ENGLERT C R, HARLANDER J M J M. Flatfielding in spatial heterodyne spectroscopy[J]. Applied Optics, 45, 4583-4590(2006).

    [42] MARR K D, ENGLERT C R, HARLANDER J M J M. Flat-fields in DASH interferometry[J]. Optics Express, 20, 9535-9544(2012).

    [43] YU Tingting, FENG Yutao, FU Di等. Analysis of influence of spike on phase retrieval accuracy of doppler asymmetric spatial heterodyne spectrometer and correction method[J]. Acta Photonica Sinica, 49, 1230001(2020).

    [44] MARR K D, THAYER A S, ENGLERT C R et al. Determining the thermomechanical image shift for the MIGHTI instrument on the NASA-ICON satellite[J]. Optical Engineering, 59, 013102(2020).

    [45] ZHANG Yafei, FENG Yutao, FU Di等. Thermal imaging drift monitoring of Doppler asymmetric spatial heterodyne spectroscopy for wind measurement based on segmented edge fitting[J]. Acta Physica Sinica, 71, 120-129(2022).

    [46] ZHOU Guan, LI Libo, FU Di等. Analysis of influence of Doppler asymmetric spatial heterodyne interferogram distortion on phase inversion accuracy[J]. Acta Photonica Sinica, 51, 0601001(2022).

    [47] HARDING B J, MAKELA J J, ENGLERT C R et al. The MIGHTI wind retrieval algorithm: description and verification[J]. Space Science Reviews, 212, 585-600(2017).

    [48] WU J J, HARDING B J, TRIPLETT C C et al. Errors from asymmetric emission rate in spaceborne, limb sounding Doppler interferometry: a correction algorithm with application to ICON/MIGHTI[J]. Earth and Space Science, 7, e2020EA001164(2020).

    [49] BABCOCK D D. Development of a space flight prototype Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer for the measurement of upper atmospheric winds[report](2011).

    [50] SOLHEIM B, BROWN S, SIORIS C et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement[J]. Atmosphere-Ocean, 53, 50-57(2015).

    [51] FU Di, ZHANG Zhinan, ZHANG Zhaohui et al. Analysis and experiment of synchronized calibration of doppler asymmetric spatial heterodyne spectroscopy (DASH)[J]. Third International Conference on Photonics and Optical Engineering, SPIE, 11052, 297-303(2019).

    [52] WEI Dakang. Development of an optical instrument for the observation of neutral winds inEarth's upper atmosphere[D]. Bergischen Universität Wuppertal(2020).

    [53] RIDER K, IMMEL T, TAYLOR E et al. ICON: Where earth's weather meets space weather[C], 1-10(2015).

    [54] HARLANDER J M J M, ENGLERT C R, BROWN C M et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): monolithic interferometer design and test[J]. Space Science Reviews, 212, 601-613(2017).

    [55] HARLANDER J M J M, ENGLERT C R, BROWN C M et al. The as-built performance of the MIGHTI interferometers[C], FTh4B. 3(2016).

    [56] MAKELA J J, BAUGHMAN M, NAVARRO L A et al. Validation of ICON‐MIGHTI thermospheric wind observations: 1. Nighttime red‐line ground‐based fabry‐perot interferometers[J]. Journal of Geophysical Research: Space Physics, 126, e2020JA028726(2021).

    [57] HARDING B J, CHAU J L, HE M et al. Validation of ICON‐MIGHTI thermospheric wind observations: 2. Green‐line comparisons to specular meteor radars[J]. Journal of Geophysical Research: Space Physics, 126, e2020JA028947(2021).

    [58] HARLANDER J M J M, ENGLERT C R. Laboratory demonstration of mini-MIGHTI: a prototype sensor for thermospheric red-line (630 nm) neutral wind measurements from a 6U CubeSat[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 207, 105363(2020).

    [59] HAN Bing, FENG Yutao. Effect of pupil matching of cold shield on the fringe contrast of long-wave infrared spatial heterodyne spectroscopy[J]. Applied Optics, 60, 9241-9248(2021).

    [60] FENG Yutao, LI Juan, ZHAO Zengliang等. Review of progress in spaceborne interferometric spectroscopy for atmospheric wind detection[J]. Aerospace Shanghai, 34, 14-26(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yang XIAO, Yutao FENG, Zhenqing WEN, Di FU. Doppler Asymmetric Spatial Heterodyne Interferometry for Wind Measurement in Middle and Upper Atmosphere(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851516

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for the 60th Anniversary of XIOPM of CAS, and the 50th Anniversary of the Acta Photonica Sinica Ⅱ

    Received: May. 17, 2022

    Accepted: Aug. 11, 2022

    Published Online: Oct. 25, 2022

    The Author Email:

    DOI:10.3788/gzxb20225108.0851516

    Topics