Acta Photonica Sinica, Volume. 51, Issue 8, 0851516(2022)
Doppler Asymmetric Spatial Heterodyne Interferometry for Wind Measurement in Middle and Upper Atmosphere(Invited)
[1] ENGLERT C R, BROWN C M, DROB D P. Wind at the top of the atmosphere[C], 132-140(2012).
[2] SHEPHERD G G. Development of wind measurement systems for future space missions[J]. Acta Astronautica, 115, 206-217(2015).
[3] MERIWETHER J W. Studies of thermospheric dynamics with a Fabry-Perot interferometer network: a review[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1576-1589(2006).
[4] YUAN Wei, XU Jiyao, MA Ruiping等. First observation of mesospheric and thermospheric winds by a Fabry-Perot interferometer in China[J]. Chinese Science Bulletin, 55, 3378-3383(2011).
[5] THUILLIER G, FALIN J L, WACHTEL C. Experimental global model of the exospheric temperature based on measurements from the Fabry-Perot interferometer on board the OGO-6 satellite—discussion of the data and properties of the model[J]. Journal of Atmospheric and Terrestrial Physics, 39, 399-414(1977).
[6] HAYS P B, KILLEEN T L, KENNEDY B C. The Fabry-Perot interferometer on dynamics explorer[J]. Space Science Instrumentation, 5, 395-416(1981).
[7] SKINNER W R, HAYS P B, GRASSL H J et al. High-resolution doppler imager on the upper atmosphere research satellite[C], 2266, 281-293(1994).
[8] KILLEEN T L, SKINNER W R, JOHNSON R M et al. TIMED doppler interferometer (TIDI)[C], 3756, 289-301(1999).
[9] SHEPHERD G G, THUILLIER G, GAULT W A et al. WINDII, the wind imaging interferometer on the upper atmosphere research satellite[J]. Journal of Geophysical Research: Atmospheres, 98, 10725-10750(1993).
[10] ENGLERT C R, HARLANDER J M J M, EMMERT J T et al. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH)[J]. Optics Express, 18, 27416-27430(2010).
[11] ENGLERT C R, HARLANDER J M J M, BROWN C M et al. Coincident thermospheric wind measurements using ground-based Doppler Asymmetric Spatial Heterodyne (DASH) and Fabry-Perot Interferometer (FPI) instruments[J]. Journal of Atmospheric and Solar-terrestrial Physics, 86, 92-98(2012).
[12] SHEPHERD G G. Doppler michelson interferometry and spatial heterodyne spectroscopy: an approach to stratospheric wind measurement[C], FW1D. 1(2013).
[13] ENGLERT C R, BROWN C M, MARR K D et al. As-built specifications of MIGHTI-The thermospheric wind and temperature instrument for the NASA ICON mission[C], FTh4B. 2(2016).
[14] FENG Yutao, YAN Peng, BAI Qinglan. Dual-channel Doppler heterodyne interferometer[P].
[15] SUN Chen, FENG Yutao, FU Di et al. The phase uncertainty from the fringe contrast of interferogram in Doppler asymmetric spatial heterodyne spectroscopy[J]. Journal of Optics, 23, 115703-115711(2021).
[16] SUN Chen, FENG Yutao, FU Di等. A propagation of interferogram signal-to-noise (SNR) and phase uncertainty in Doppler asymmetric spatial heterodyne spectrometer[J]. Acta Physica Sinica, 69, 240-247(2020).
[17] WU Kuijun, FU Di, FENG Yutao. Simulation and application of the emission line O19P18 of O2(a1Δg) day glow near 1.27 μm for wind observation from limb-viewing satellites[J]. Optics Express, 26, 16984-16999(2018).
[18] LIU Jilin, WEI Daikang, ZHU Yajun. Effective wind and temperature retrieval from Doppler asymmetric spatial heterodyne spectrometer interferograms[J]. Applied Optics, 57, 8829-8836(2018).
[19] SHEN Jing, XIONG Wei, SHI Hailiang. Absolute phase drift analysis and correction of asymmetric spatial heterodyne interferometer for wind detection[J]. Acta Optica Sinica, 37, 0430003(2017).
[20] KUANG Yinli, FANG Liang, PENG Xiang. Simulation of Doppler velocity measurement based on Doppler asymmetric space heterodyne spectroscopy[J]. Acta Physica Sinica, 67, 111-118(2018).
[21] ENGLERT C R, HARLANDER J M J M, BABCOCK D D et al. Doppler Asymmetric Spatial Heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[C], 6303, 272-279(2006).
[22] ENGLERT C R, BABCOCK D D, HARLANDER J M J M. Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration[J]. Applied Optics, 46, 7297-7307(2007).
[23] HARLANDER J M J M, ENGLERT C R, MARR K D et al. On the uncertainties in determining fringe phase in Doppler asymmetric spatial heterodyne spectroscopy[J]. Applied Optics, 58, 3613-3619(2019).
[24] HARLANDER J M, ENGLERT C R. Doppler asymmetric spatial heterodyne spectroscopy[P].
[25] SHEN Jing, XIONG Wei, SHI Hailiang等. Data processing method of asymmetric spatial heterodyne interferogram for wind measurement[J]. Spectroscopy and Spectral Analysis, 36, 3014-3019(2016).
[26] CHEN Jiejing, FENG Yutao, HU Bingliang等. Window function optimization in atmospheric wind velocity retrieval with Doppler difference interference spectrometer[J]. Acta Optica Sinic, 37, 92-98(2017).
[27] LIU J, WEI D, ZHU Y et al. Effective wind and temperature retrieval from Doppler asymmetric spatial heterodyne spectrometer interferograms[J]. Applied Optics, 57, 8829-8835(2018).
[28] MARR K D, MORROW W H, BROWN C M et al. Calibration lamp design, characterization, and implementation for the Michelson interferometer for global high-resolution thermospheric imaging instrument on the ionospheric connection satellite[J]. Optical Engineering, 58, 054104(2019).
[29] ENGLERT C R, HARLANDER J M J M, BROWN C M et al. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): instrument design and calibration[J]. Space Science Reviews, 212, 553-584(2017).
[30] SMITH B W, LAUBSCHER B E, COOKE B J et al. IRISHS: the infrared imaging spatial heterodyne spectrometer: a new pushbroom Fourier transform ultraspectral imager with no moving parts[C], 3698, 501-509(1999).
[31] ENGLERT C R, BROWN C M, BACH B et al. High-efficiency echelle gratings for MIGHTI, the spatial heterodyne interferometers for the ICON mission[J]. Applied Optics, 56, 2090-2098(2017).
[32] FENG Yutao, YAN Peng, SUN Jian等. Static two-channel Doppler heterodyne interferometer[P].
[33] FENG Yutao, BAI Qinglan, SUN Jian等. Dual-channel Doppler heterodyne interferometer[P].
[34] ENGLERT C R, STEVENS M H, SISKIND D E. Basic principle of Doppler Asymmetric Spatial Heterodyne Spectroscopy (DASH): An innovative concept for measuring winds in planetary atmospheres[J]. Fourier Transform Spectroscopy/ Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest Series (CD), F4hA3(2007).
[35] FENG Yutao, BAI Qinglan, WANG Yongmei等. Theory and method for designing field-widened prism of spatial heterodyne spectrometer[J]. Acta Optica Sinica, 32, 272-277(2012).
[36] ENGLERT C R. Spatial heterodyne spectroscopy: an emerging optical technique for heliophysics and beyond[C](2010).
[37] FEI Xiaoyun, FENG Yutao, BAI Qinglan等. Dual field Doppler heterodyne interferometer[P].
[38] FEI Xiaoyun. Basic study on a co-path doppler asymmetric spatial heterodyne spectroscopy interferometer with two fields of view for atmospheric wind vector observation form satellite platforms[D](2015).
[39] WEI D, ZHU Y, LIU J et al. Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance[J]. Optics Express, 28, 19887-19900(2020).
[40] HARLANDER J M J M, ENGLERT C R. Design of a real-fringe DASH interferometer for observations of thermospheric winds from a small satellite[C], FW1D. 2(2013).
[41] ENGLERT C R, HARLANDER J M J M. Flatfielding in spatial heterodyne spectroscopy[J]. Applied Optics, 45, 4583-4590(2006).
[42] MARR K D, ENGLERT C R, HARLANDER J M J M. Flat-fields in DASH interferometry[J]. Optics Express, 20, 9535-9544(2012).
[43] YU Tingting, FENG Yutao, FU Di等. Analysis of influence of spike on phase retrieval accuracy of doppler asymmetric spatial heterodyne spectrometer and correction method[J]. Acta Photonica Sinica, 49, 1230001(2020).
[44] MARR K D, THAYER A S, ENGLERT C R et al. Determining the thermomechanical image shift for the MIGHTI instrument on the NASA-ICON satellite[J]. Optical Engineering, 59, 013102(2020).
[45] ZHANG Yafei, FENG Yutao, FU Di等. Thermal imaging drift monitoring of Doppler asymmetric spatial heterodyne spectroscopy for wind measurement based on segmented edge fitting[J]. Acta Physica Sinica, 71, 120-129(2022).
[46] ZHOU Guan, LI Libo, FU Di等. Analysis of influence of Doppler asymmetric spatial heterodyne interferogram distortion on phase inversion accuracy[J]. Acta Photonica Sinica, 51, 0601001(2022).
[47] HARDING B J, MAKELA J J, ENGLERT C R et al. The MIGHTI wind retrieval algorithm: description and verification[J]. Space Science Reviews, 212, 585-600(2017).
[48] WU J J, HARDING B J, TRIPLETT C C et al. Errors from asymmetric emission rate in spaceborne, limb sounding Doppler interferometry: a correction algorithm with application to ICON/MIGHTI[J]. Earth and Space Science, 7, e2020EA001164(2020).
[49] BABCOCK D D. Development of a space flight prototype Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer for the measurement of upper atmospheric winds[report](2011).
[50] SOLHEIM B, BROWN S, SIORIS C et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement[J]. Atmosphere-Ocean, 53, 50-57(2015).
[51] FU Di, ZHANG Zhinan, ZHANG Zhaohui et al. Analysis and experiment of synchronized calibration of doppler asymmetric spatial heterodyne spectroscopy (DASH)[J]. Third International Conference on Photonics and Optical Engineering, SPIE, 11052, 297-303(2019).
[52] WEI Dakang. Development of an optical instrument for the observation of neutral winds inEarth's upper atmosphere[D]. Bergischen Universität Wuppertal(2020).
[53] RIDER K, IMMEL T, TAYLOR E et al. ICON: Where earth's weather meets space weather[C], 1-10(2015).
[54] HARLANDER J M J M, ENGLERT C R, BROWN C M et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): monolithic interferometer design and test[J]. Space Science Reviews, 212, 601-613(2017).
[55] HARLANDER J M J M, ENGLERT C R, BROWN C M et al. The as-built performance of the MIGHTI interferometers[C], FTh4B. 3(2016).
[56] MAKELA J J, BAUGHMAN M, NAVARRO L A et al. Validation of ICON‐MIGHTI thermospheric wind observations: 1. Nighttime red‐line ground‐based fabry‐perot interferometers[J]. Journal of Geophysical Research: Space Physics, 126, e2020JA028726(2021).
[57] HARDING B J, CHAU J L, HE M et al. Validation of ICON‐MIGHTI thermospheric wind observations: 2. Green‐line comparisons to specular meteor radars[J]. Journal of Geophysical Research: Space Physics, 126, e2020JA028947(2021).
[58] HARLANDER J M J M, ENGLERT C R. Laboratory demonstration of mini-MIGHTI: a prototype sensor for thermospheric red-line (630 nm) neutral wind measurements from a 6U CubeSat[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 207, 105363(2020).
[59] HAN Bing, FENG Yutao. Effect of pupil matching of cold shield on the fringe contrast of long-wave infrared spatial heterodyne spectroscopy[J]. Applied Optics, 60, 9241-9248(2021).
[60] FENG Yutao, LI Juan, ZHAO Zengliang等. Review of progress in spaceborne interferometric spectroscopy for atmospheric wind detection[J]. Aerospace Shanghai, 34, 14-26(2017).
Get Citation
Copy Citation Text
Yang XIAO, Yutao FENG, Zhenqing WEN, Di FU. Doppler Asymmetric Spatial Heterodyne Interferometry for Wind Measurement in Middle and Upper Atmosphere(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851516
Category: Special Issue for the 60th Anniversary of XIOPM of CAS, and the 50th Anniversary of the Acta Photonica Sinica Ⅱ
Received: May. 17, 2022
Accepted: Aug. 11, 2022
Published Online: Oct. 25, 2022
The Author Email: