Journal of Innovative Optical Health Sciences, Volume. 18, Issue 5, 2550014(2025)

Severity assessment of burned skin based on anisotropy of optical coherence elastography

Heng Liu, Di Yang, Renfei Jia, Weike Wang, Lili Shao, Quanzhong Liu, and Yanmei Liang*
References(31)

[1] J. Zhao, R. Wang, Y. Wu, C. Zhao, Y. Qi, S. Li, H. Jiang, B. Cao. From characteristics to practical applications of skin temperature in thermal comfort research – a comprehensive review. Build. Environ., 262, 111820(2024).

[2] N. Karimi. Approaches in line with human physiology to prevent skin aging. Front. Physiol., 14, 1279371(2023).

[3] O. B. Osman, Z. B. Harris, M. E. Khani, J. W. Zhou, A. Chen, A. J. Singer, M. Hassan Arbab. Deep neural network classification of in vivo burn injuries with different etiologies using terahertz time-domain spectral imaging. Biomed. Opt. Express, 13, 1855-1868(2022).

[4] L. Rittié, G. J. Fisher. Natural and sun-induced aging of human skin. Cold Spring Harb. Perspect. Med., 5, a015370(2015).

[5] Y. Wang, J. Beekman, J. Hew, S. Jackson, A. C. Issler-Fisher, R. Parungao, S. S. Lajevardi, Z. Li, P. K. M. Maitz. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv. Drug Deliver. Rev., 123, 3-17(2018).

[6] D. Pantalone, C. Bergamini, J. Martellucci, G. Alemanno, A. Bruscino, G. Maltinti, M. Sheiterle, R. Viligiardi, R. Panconesi, T. Guagni, P. Prosperi. The role of DAMPS in burns and hemorrhagic shock immune response: Pathophysiology and clinical issues. Review. Int. J. Mol. Sci., 22, 7020(2021).

[7] M. Abazari, A. Ghaffari, H. Rashidzadeh, S. M. Badeleh, Y. Maleki. A systematic review on classification, identification, and healing process of burn wound healing. Int. J. Low. Extr. Wounds, 21, 18-30(2020).

[8] H. A. Phelan, J. H. Holmes, W. L. Hickerson, C. J. Cockerell, J. W. Shupp, J. E. Carter. Use of 816 consecutive burn wound biopsies to inform a histologic algorithm for burn depth categorization. J. Burn Care Res., 42, 1162-1167(2021).

[9] Y. Zuo, X. Yu, S. Lu. Dermal fibroblasts from different layers of pig skin exhibit different profibrotic and morphological characteristics. Anat. Rec., 299, 1585-1599(2016).

[10] B. Zheng, C. Shen, J. Sun, W. Guo, Y. Jin, Y. Niu. Developing a simple burn model in rats of different ages. J. Burn Care Res., 40, 639-647(2019).

[11] B. Wan, C. Ganier, X. Du-Harpur, N. Harun, F. M. Watt, R. Patalay, M. D. Lynch. Applications and future directions for optical coherence tomography in dermatology. Brit. J. Dermatol., 184, 1014-1022(2021).

[12] Y. J. Wang, J. Y. Wang, Y. H. Wu. Application of cellular resolution full-field optical coherence tomography in vivo for the diagnosis of skin tumours and inflammatory skin diseases: A pilot study. Dermatology, 238, 121-131(2021).

[13] J. Olsen, J. Holmes, G. B. E. Jemec. Advances in optical coherence tomography in dermatology — a review. J. Biomed. Opt., 23, 040901(2018).

[14] W. Gao, V. P. Zakharov, O. O. Myakinin, I. A. Bratchenko, D. N. Artemyev, D. V. Kornilin. Medical images classification for skin cancer using quantitative image features with optical coherence tomography. J. Innov. Opt. Heal. Sci., 09, 1650003(2015).

[15] X. Liang, V. Crecea, S. A. Boppart. Dynamic optical coherence elastography: A review. J. Innov. Opt. Heal. Sci., 03, 221-233(2010).

[16] V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, A. Vitkin. Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues. J. Innov. Opt. Heal. Sci., 10, 1742006(2017).

[17] W. J. Moy, E. Su, J. J. Chen, C. Oh, J. C. Jing, Y. Qu, Y. He, Z. Chen, B. J. F. Wong. Association of electrochemical therapy with optical, mechanical, and acoustic impedance properties of porcine skin. JAMA Facial Plast. Surg., 19, 502(2017).

[18] X. Feng, G.-Y. Li, A. Ramier, A. M. Eltony, S.-H. Yun. In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography. Acta Biomater., 146, 295-305(2022).

[19] C. H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, K. V. Larin. Translational optical coherence elastography for assessment of systemic sclerosis. J. Biophotonics, 12, e201900236(2019).

[20] M. A. Kirby, P. Tang, H. C. Liou, M. Kuriakose, J. J. P., T. N. Pham, R. E. Ettinger, R. K. Wang, M. O’Donnell, I. Pelivanov. Probing elastic anisotropy of human skin in vivo with light using non-contact acoustic micro-tapping OCE and polarization sensitive OCT. Sci. Rep., 12, 3963(2022).

[21] H. Liu, D. Yang, R. Jia, W. Wang, J. Shang, Q. Liu, Y. Liang. Dynamic optical coherence elastography for skin burn assessment: A preliminary study on mice model. J. Biophotonics, 17, e202400028(2024).

[22] N. C. Rouze, M. H. Wang, M. L. Palmeri, K. R. Nightingale. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium. J. Biomech., 46, 2761-2768(2013).

[23] A. Rodriguez, A. Laio. Clustering by fast search and find of density peaks. Science, 344, 1492-1496(2014).

[24] A. Wardhana, R. F. M. Lumbuun, D. Kurniasari. How to create burn porcine models: A systematic review. Ann. Burns Fire Disasters, 31, 65-72(2018).

[25] L. Liu, X. Hao, J. Zhang, S. Li, S. Han, P. Qian, Y. Zhang, H. Yu, Y. Kang, Y. Yin, W. Zhang, J. Chen, Y. Yu, H. Jiang, J. Chai, H. Yin, W. Chai. The wound healing of deep partial-thickness burn in Bama miniature pigs is accelerated by a higher dose of hUCMSCs. Stem Cell Res. Ther., 15, 437(2024).

[26] D. M. Burmeister, D. M. Supp, R. A. Clark, E. E. Tredget, H. M. Powell, P. Enkhbaatar, J. K. Bohannon, L. C. Cancio, D. M. Hill, R. M. Nygaard. Advantages and disadvantages of using small and large animals in burn research: Proceedings of the 2021 research special interest group. J. Burn Care Res., 43, 1032-1041(2022).

[27] M. Seaton, A. Hocking, N. S. Gibran. Porcine models of cutaneous wound healing. ILAR J., 56, 127-138(2015).

[28] T. M. Cannon, N. Uribe-Patarroyo, M. Villiger, B. E. Bouma. Measuring collagen injury depth for burn severity determination using polarization sensitive optical coherence tomography. Sci. Rep., 12, 10479(2022).

[29] M. Gan, C. Wang, T. Yang, N. Yang, M. Zhang, W. Yuan, X. D. Li, L. Wang. Robust layer segmentation of esophageal OCT images based on graph search using edge-enhanced weights. Biomed. Opt. Express, 9, 4481-4495(2018).

[30] Z. Yang, J. Shang, C. Liu, J. Zhang, Y. Liang. Identification of oral cancer in OCT images based on an optical attenuation model. Lasers Med. Sci., 35, 1999-2007(2020).

[31] Y.-Y. Dang, Q.-S. Ren, H.-X. Liu, J.-B. Ma, J.-S. Zhang. Comparison of histologic, biochemical, and mechanical properties of murine skin treated with the 1064-nm and 1320-nm Nd:YAG lasers. Exp. Dermatol., 14, 876-882(2005).

Tools

Get Citation

Copy Citation Text

Heng Liu, Di Yang, Renfei Jia, Weike Wang, Lili Shao, Quanzhong Liu, Yanmei Liang. Severity assessment of burned skin based on anisotropy of optical coherence elastography[J]. Journal of Innovative Optical Health Sciences, 2025, 18(5): 2550014

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Jan. 27, 2025

Accepted: Mar. 26, 2025

Published Online: Aug. 27, 2025

The Author Email: Yanmei Liang (ymliang@nankai.edu.cn)

DOI:10.1142/S1793545825500142

Topics