Journal of Innovative Optical Health Sciences, Volume. 13, Issue 3, 2050013(2020)
A novel fluorogenic probe for visualizing the hydrogen peroxide in Parkinson's disease models
[1] [1] B. D'Autreaux, M. B. Toledano, "ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis," Nat. Rev. Mol. Cell Biol. 8(10), 813–824 (2007).
[2] [2] C. Nathan, A. Cunningham-Bussel, "Beyond oxidative stress:An immunologist's guide to reactive oxygen species," Nat. Rev. Immunol. 13(5), 349–361 (2013).
[3] [3] D. Trachootham, J. Alexandre, P. Huang, "Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?," Nat. Rev. Drug Discov. 8(7), 579–591 (2009).
[4] [4] K. J. Barnham, C. L. Masters, A. I. Bush, "Neurodegenerative diseases and oxidative stress," Nat. Rev. Drug. Discov. 3(3), 205–214 (2004).
[5] [5] P. Fraisl, J. Aragones, P. Carmeliet, "Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease," Nat. Rev. Drug Discov. 8(2), 139–152 (2009).
[6] [6] B. Yang, Y. Chen, J. Shi, "Reactive oxygen species (ROS)-based nanomedicine," Chem. Rev. 119(8), 4881–4985 (2019).
[7] [7] E. A. Veal, A. M. Day, B. A. Morgan, "Hydrogen peroxide sensing and signaling," Mol. Cell 26(1), 1–14 (2007).
[8] [8] T. J. Collier, N. M. Kanaan, J. H. Kordower, "Ageing as a primary risk factor for Parkinson's disease: Evidence from studies of non-human primates," Nat. Rev. Neurosci. 12(6), 359–366 (2011).
[9] [9] M. J. Devine, H. Plun-Favreau, N. W. Wood, "Parkinson's disease and cancer: Two wars, one front," Nat. Rev. Cancer 11(11), 813–823 (2011).
[10] [10] J. K. Andersen, "Oxidative stress in neurodegeneration: Cause or consequence?," Nat. Med. 10(S7), S18–S25 (2004).
[11] [11] J. Blesa, I. Trigo-Damas, A. Quiroga-Varela, V. R. Jackson-Lewis, "Oxidative stress and Parkinson's disease," Front. Neuroanat. 9(91), 1–9 (2015).
[12] [12] Y. Yang, Q. Zhao, W. Feng, F. Li, "Luminescent chemodosimeters for bioimaging," Chem. Rev. 113 (1), 192–270 (2013).
[13] [13] J. L. Kolanowski, F. Liu, E. J. New, "Fluorescent probes for the simultaneous detection of multiple analytes in biology," Chem. Soc. Rev. 47(1), 195–208 (2018).
[14] [14] K. Singh, A.M. Rotaru, A. A. Beharry, "Fluorescent chemosensors as future tools for cancer biology," ACS Chem. Biol. 13(7), 1785–1798 (2018).
[15] [15] D. Wu, A. C. Sedgwick, T. Gunnlaugsson, E. U. Akkaya, J. Yoon, T. D. James, "Fluorescent chemosensors: The past, present and future," Chem. Soc. Rev. 46(23), 7105–7123 (2017).
[16] [16] G. Zhang, A. Ding, Y. Zhang, L. Yang, L. Kong, X. Zhang, X. Tao, Y. Tian, J. Yang, "Schiff base modified α-cyanostilbene derivative with aggregation-induced emission enhancement characteristics for Hg2+ detection," Sens. Actuators B. Chem. 202, 209–216 (2014).
[17] [17] G. Zhang, X. Zhang, Y. Zhang, H. Wang, L. Kong, Y. Tian, X. Tao, H. Bi, J. Yang, "Design of turn-on fluorescent probe for effective detection of Hg2+ by combination of AIEE-active fluorophore and binding site," Sens. Actuators B. Chem. 221, 730–739 (2015).
[18] [18] M. Abo, Y. Urano, K. Hanaoka, T. Terai, T. Komatsu, T. Nagano, "Development of a highly sensitive fluorescence probe for hydrogen peroxide," J. Am. Chem. Soc. 133(27), 10629–10637 (2011).
[19] [19] Z. Song, R. T. Kwok, D. Ding, H. Nie, J. W. Lam, B. Liu, B. Z. Tang, "An AIE-active fluorescence turn-on bioprobe mediated by hydrogen-bonding interaction for highly sensitive detection of hydrogen peroxide and glucose," Chem. Commun. 52(65), 10076–10079 (2016).
[20] [20] H. Xiao, P. Li, S. Zhang, W. Zhang, W. Zhang, B. Tang, "Simultaneous fluorescence visualization of mitochondrial hydrogen peroxide and zinc ions in live cells and in vivo," Chem. Commun. 52(86), 12741–12744 (2016).
[21] [21] X. Chen, F. Wang, J. Y. Hyun, T. Wei, J. Qiang, X. Ren, I. Shin, J. Yoon, "Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species," Chem. Soc. Rev. 45(10), 2976–3016 (2016).
[22] [22] M. Ren, B. Deng, K. Zhou, X. Kong, J.-Y. Wang, W. Lin, "Single fluorescent probe for dual-imaging viscosity and H2O2 in mitochondria with different fluorescence signals in living cells," Anal. Chem. 89(1), 552–555 (2016).
[23] [23] B. Dong, X. Song, X. Kong, C. Wang, Y. Tang, Y. Liu, W. Lin, "Simultaneous near-infrared and two-photon in vivo imaging of H2O2 using a ratiometric fluorescent probe based on the unique oxidative rearrangement of oxonium," Adv. Mater. 28(39), 8755–8759 (2016).
[24] [24] H. Li, Q. Yao, J. Fan, J. Du, J. Wang, X. Peng, "A two-photon NIR-to-NIR fluorescent probe for imaging hydrogen peroxide in living cells," Biosens. Bioelectron. 94, 536–543 (2017).
[25] [25] M. G. Savelieff, G. Nam, J. Kang, H. J. Lee, M. Lee, M. H. Lim, "Development of multifunctional molecules as potential therapeutic candidates for Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis in the last decade," Chem. Rev. 119(2), 1221–1322 (2019).
[26] [26] L. Qian, L. Li, S. Q. Yao, "Two-photon small molecule enzymatic probes," Acc. Chem. Res. 49(4), 626–634 (2016).
[27] [27] L. Wang, W. Du, Z. Hu, K. Uvdal, L. Li, W. Huang, "Hybrid rhodamine fluorophores in the visible/NIR region for biological imaging," Angew. Chem. Int. Ed. 58, 14026–14043 (2019).
[28] [28] G. Zhang, Y. Zhao, B. Peng, Z. Li, C. Xu, Y. Liu, C. Zhang, N. H. Voelcker, L. Li, W. Huang, "A fluorogenic probe based on chelation-hydrolysisenhancement mechanism for visualizing Zn2+ in Parkinson's disease models," J. Mater. Chem. B 7(14), 2252–2260 (2019).
[29] [29] G. Zhang, Y. Ni, D. Zhang, H. Li, N. Wang, C. Yu, L. Li, W. Huang, "Rational design of NIR fluorescence probes for sensitive detection of viscosity in living cells," Spectrochim. Acta. A Mol. Biomol. Spectrosc. 214, 339–347 (2019).
[30] [30] X. Qiu, C. Xin, W. Qin, Z. Li, D. Zhang, G. Zhang, B. Peng, X. Han, C. Yu, L. Li, W. Huang, "A novel pyrimidine based deep-red fluorogenic probe for detecting hydrogen peroxide in Parkinson's disease models," Talanta. 199, 628–633 (2019).
[31] [31] X. Qin, C. Yu, J. Wei, L. Li, C. Zhang, Q. Wu, J. Liu, S. Q. Yao, W. Huang, "Rational design of nanocarriers for intracellular protein delivery," Adv. Mater. 31(46), 1902791 (2019).
[32] [32] H. Li, C. Xin, G. Zhang, X. Han, W. Qin, C. W. Zhang, C. Yu, S. Jing, L. Li, W. Huang, "A mitochondria-targeted two-photon fluorogenic probe for the dual-imaging of viscosity and H2O2 levels in Parkinson's disease models," J. Mater. Chem. B 7(27), 4243–4251 (2019).
[33] [33] Y. Liu, L. Bai, Y. Li, Y. Ni, C. Xin, C. Zhang, J. Liu, Z. Liu, L. Li, W. Huang, "Visualizing hydrogen peroxide in Parkinson's disease models via a ratiometric NIR fluorogenic probe," Sens. Actuators B: Chem. 279, 38–43 (2019).
[34] [34] T. W. Harris, "WormBase: A multi-species resource for nematode biology and genomics," Nucleic Acids Res. 32(90001), 411D–417 (2004).
[35] [35] M. Markaki, N. Tavernarakis, "Modeling human diseases in Caenorhabditis elegans," Biotechnol. J. 5 (12), 1261–1276 (2010).
[36] [36] L. Li, C. W. Zhang, G. Y. Chen, B. Zhu, C. Chai, Q. H. Xu, E. K. Tan, Q. Zhu, K. L. Lim, S. Q. Yao, "A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson's disease models," Nat. Commun. 5, 3276 (2014).
[37] [37] C. W. Zhang, H. B. Adeline, B. H. Chai, E. T. Hong, C. H. Ng, K. L. Lim, "Pharmacological or genetic activation of Hsp70 protects against loss of parkin function," Neurodegener Dis. 16(5–6), 304–316 (2016).
Get Citation
Copy Citation Text
Gaobin Zhang, Zheng Li, Fangjie Chen, Duoteng Zhang, Wenhui Ji, Zhengpeng Yang, Qiong Wu, Chengwu Zhang, Lin Li, Wei Huang. A novel fluorogenic probe for visualizing the hydrogen peroxide in Parkinson's disease models[J]. Journal of Innovative Optical Health Sciences, 2020, 13(3): 2050013
Received: Jan. 18, 2020
Accepted: Mar. 30, 2020
Published Online: Aug. 6, 2020
The Author Email: Qiong Wu (iamqwu@njtech.edu.cn)