Matter and Radiation at Extremes, Volume. 10, Issue 3, 033801(2025)
Advances in high-pressure materials discovery enabled by machine learning
[25] A.Blattmann, P.Esser, D.Lorenz, B.Ommer, R.Rombach. High-resolution image synthesis with latent diffusion models, 10674-10685(2022).
[97] J.-C.Crivello, A.Nouira, N.Sokolovska. CrystalGAN: Learning to discover crystallographic structures with generative adversarial networks. Combining Machine Learning with Knowledge Engineering (AAAI(2018).
[114] R.Barzilay, X.Fu, O.-E.Ganea, T.Jaakkola, T.Xie. Crystal diffusion variational autoencoder for periodic material generation,” in
[116] P.Abbeel, K.Cho, A.Merchant, D.Schuurmans, M.Yang et al. Scalable diffusion for materials generation. Advances in Neural Information Processing Systems (NeurIPS)(2023).
[118] P.Chen, J.Han, W.Huang, R.Jiao, P.Lin et al. Crystal structure prediction by joint equivariant diffusion. Advances in Neural Information Processing Systems (NeurIPS)(2023).
[119] W.Huang, R.Jiao, Y.Liu, Y.Liu, D.Zhao. Space group constrained crystal generation,” in
[125] J.Cen, P.Chen, R.Jiao, P.Lin, Q.Mo et al. Equivariant diffusion for crystal structure prediction,” in
[126] S.Gupta, T. M.Nguyen, S.Rana, S.Tawfik, r.Tran et al. Hierarchical GFlownet for crystal structure generation. Advances in Neural Information Processing Systems (NeurIPS)(2023).
[127] M.Galkin, S.-O.Kaba, D.Levy, S. S.Panigrahi, Q.Zhu et al. SymmCD: Symmetry-Preserving crystal generation with diffusion models. AI for Accelerated Materials Disc(2024).
[136] N.Gruver, A.Madotto, A.Sriram, A. G.Wilson, C. L.Zitnick et al. Fine-tuned language models generate stable inorganic materials as text,” in
[137] R. T. Q.Chen, B. K.Miller, A.Sriram, B. M.Wood. FlowLLM: Flow matching for material generation with large language models as base distributions. Advances in Neural Information Processing Systems (NeurIPS)(2024).
[140] K.Ashen, C.Edwards, X.Li, H.Ling, K.Yan et al. Invariant tokenization of crystalline materials for language model enabled generation. Advances in Neural Information Processing Systems (NeurIPS)(2024).
Get Citation
Copy Citation Text
Zhenyu Wang, Xiaoshan Luo, Qingchang Wang, Heng Ge, Pengyue Gao, Wei Zhang, Jian Lv, Yanchao Wang. Advances in high-pressure materials discovery enabled by machine learning[J]. Matter and Radiation at Extremes, 2025, 10(3): 033801
Received: Dec. 29, 2024
Accepted: Feb. 24, 2025
Published Online: Jul. 16, 2025
The Author Email: