Laser & Optoelectronics Progress, Volume. 57, Issue 8, 081005(2020)

Finger Vein Recognition Based on Improved AlexNet

Zhiyong Tao1, Yalei Hu1,2、*, and Sen Lin1
Author Affiliations
  • 1School of Electronic & Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China;
  • 2Fuxinlixing Technology Company Limited, Fuxin, Liaoning 123000, China
  • show less
    Figures & Tables(16)
    Image collection method. (a) Direct light collection; (b) light reflection collection
    Finger vein pretreatment process
    Gray scale linear interpolation schematic
    Finger vein effect after CLAHE algorithm processing. (a) Original image; (b) image enhancement
    AlexNet model structure
    Schematic of SPP
    Im-AlexNet model structure renderings
    Curves of JY_DB. (a) Loss curves; (b) recognition accuracy curves
    Curves of SD_DB. (a) Loss curves; (b) recognition accuracy curves
    • Table 1. AlexNet model structure parameters

      View table

      Table 1. AlexNet model structure parameters

      LayerNumber of filtersSize of kernelStride
      Conv19611×114
      Pool1-3×32
      Conv22565×51
      Pool2-3×32
      Conv33843×31
      Conv43843×31
      Conv52563×31
      Pool3-3×32
      FC layer140961×11
      FC layer240961×11
      FC layer310001×11
    • Table 2. Im-AlexNet model structure parameters

      View table

      Table 2. Im-AlexNet model structure parameters

      LayerNumber of filtersSize of kernelStride
      Conv1965×54
      Conv2961×11
      Pool1-3×32
      Conv32565×51
      Conv42561×11
      Pool2-3×32
      Conv53843×31
      Conv63841×11
      Conv73843×31
      Conv83841×11
      Conv92563×31
      Conv102561×11
      Pool3(SPP)---
      FC layer110241×11
      FC layer2Class1×11
    • Table 3. Finger vein datasets division

      View table

      Table 3. Finger vein datasets division

    • Table 4. Experimental parameters

      View table

      Table 4. Experimental parameters

      ParameterValue
      Batch128
      Epoch500
      Numbers of samples per epoch1280
      LR of SGD0.001
      Momentum of SGD0.9
      Training number64000
      Dropout0.25
    • Table 5. Comparison of training time before and after network improvement

      View table

      Table 5. Comparison of training time before and after network improvement

      NetworkDatabaseTime/min
      AlexNetJY_DB125
      SD_DB84
      Im-AlexNetJY_DB29
      SD_DB25
    • Table 6. Comparison of recognition accuracy before and after network improvement

      View table

      Table 6. Comparison of recognition accuracy before and after network improvement

      NetworkDatabaseAccuracy/%
      AlexNetJY_DB95.04
      SD_DB94.36
      Im-AlexNetJY_DB99.25
      SD_DB98.23
    • Table 7. Comparison of recognition accuracy of different image feature algorithms on SD_DB

      View table

      Table 7. Comparison of recognition accuracy of different image feature algorithms on SD_DB

      MethodAccuracy /%
      SPF[24]87.00
      SPCF[25]92.71
      CLAHE+directional dilation (DD) [26]90.72
      CNN (ULDFV-VGG16[15])92.60
      CNN (ULDFV-Xception[15])93.50
      CNN (ULDFV-ResNet[15])96.60
      CNN (Inception-ResNet V2[15])96.70
      Dula-sliding window+location+Pseudo-elliptical transformer+2D-PCA[27]97.02
      Block-based average absolute deviation (AAD) features[28]97.76
      CNN (Proposed CNN[29])97.48
      CNN (AlexNet)94.36
      CNN (Im-AlexNet)98.23
    Tools

    Get Citation

    Copy Citation Text

    Zhiyong Tao, Yalei Hu, Sen Lin. Finger Vein Recognition Based on Improved AlexNet[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 26, 2019

    Accepted: Sep. 6, 2019

    Published Online: Apr. 3, 2020

    The Author Email: Yalei Hu (mrhu165981@163.com)

    DOI:10.3788/LOP57.081005

    Topics