Laser & Optoelectronics Progress, Volume. 56, Issue 10, 101010(2019)

Palm Vein Classification Based on Deep Neural Network and Random Forest

Lisha Yuan, Mengying Lou, Yaqin Liu**, Feng Yang, and Jing Huang*
Author Affiliations
  • School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
  • show less
    References(32)

    [4] Wei Z S, Qiu X C, Sun Z N et al. Counterfeit iris detection based on texture analysis. [C]∥2008 19th International Conference on Pattern Recognition, December 8-11, 2008, Tampa, FL, USA. New York: IEEE, 1-4(2008).

    [6] Li Q. The theoretical and experimental study on palm vein recognition technology[D]. Wuhan: Huazhong University of Science and Technology(2010).

    [7] Watanabe M. Palm vein authentication[M]. London: Springer, 75-88(2008).

    [10] Lee Y P. Palm vein recognition based on a modified (2D) 2LDA [J]. Signal, Image and Video Processing, 9, 229-242(2015).

    [16] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [18] He K M, Zhang X Y, Ren S Q et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1026-1034(2015).

    [21] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1520-1528(2015).

    [25] Sargano A B, Wang X F, Angelov P et al. Human action recognition using transfer learning with deep representations. [C]∥2017 International Joint Conference on Neural Networks (IJCNN), May 14-19, 2017, Anchorage, AK, USA. New York: IEEE, 463-469(2017).

    [26] Wu W, Yuan W Q. A survey of palm-vein image recognition[J]. Journal of Image and Graphics, 18, 1215-1224(2013).

    [27] Kumar A, Wang K. Identifying humans by matching their left palmprint with right palmprint images using convolutional neural network[S.l.:s.n.], 1-6(2016).

    [28] Yosinski J, Clune J, Bengio Y et al. How transferable are features in deep neural networks?[S.l.:s.n.], 3320-3328(2014).

    [29] Chen P. Principal component analysis and its application in feature extraction Xi'an:[D]. Shaanxi Normal University(2014).

    [31] Li H[M]. Statistical learning method(2012).

    [32] Liu Y Q, Zhou Y J, Qiu S R et al[M]. Real-time locating method for palmvein image acquisition, 94-110(2015).

    Tools

    Get Citation

    Copy Citation Text

    Lisha Yuan, Mengying Lou, Yaqin Liu, Feng Yang, Jing Huang. Palm Vein Classification Based on Deep Neural Network and Random Forest[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Oct. 30, 2018

    Accepted: Dec. 12, 2018

    Published Online: Jul. 4, 2019

    The Author Email: Yaqin Liu (liuyq@smu.edu.cn), Jing Huang (jhuangyg@smu.edu.cn)

    DOI:10.3788/LOP56.101010

    Topics