Infrared Technology, Volume. 47, Issue 8, 1009(2025)
Infrared Image Object Detection Algorithm Based on Improved YOLOv5
[1] [1] WANG H, LI H, ZHOU H, et al. Low-altitude infrared small target detection based on fully convolutional regression network and graph matching[J].Infrared Physics & Technology, 2021,115: 103738.
[2] [2] DAI Y, WU Y, ZHOU F, et al. Attentional local contrast networks for infrared small target detection[J].IEEE Transactions on Geoscience and Remote Sensing, 2021,59(11): 9813-9824.
[5] [5] CHEN L, CHEN X, RAO P, et al. Space-based infrared aerial target detection method via interframe registration and spatial local contrast[J].Optics and Lasers in Engineering, 2022,158: 107131.
[7] [7] DENG L, ZHANG J, XU G, et al. Infrared small target detection via adaptive M-estimator ring top-hat transformation[J].Pattern Recognition, 2021,112: 107729.
[9] [9] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[10] [10] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[11] [11] Redmon J, Farhadi A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
[12] [12] WANG X, Shrivastava A, Gupta A. A-fast-rcnn: hard positive generation via adversary for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2606-2615.
[13] [13] DUAN K, BAI S, XIE L, et al. Centernet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6569-6578.
[14] [14] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision, 2020: 213-229.
[16] [16] JU M, LUO J, LIU G, et al. ISTDet: an efficient end-to-end neural network for infrared small target detection[J].Infrared Physics & Technology, 2021,114: 103659..
[18] [18] XUE Y, JU Z, LI Y, et al. MAF-YOLO: multi-modal attention fusion based YOLO for pedestrian detection[J].Infrared Physics & Technology, 2021,118: 103906.
[19] [19] Purkait P, ZHAO C, Zach C. SPP-net: Deep absolute pose regression with synthetic views[J].British Machine Vision Conference, 2017,171: 1-10.
[20] [20] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[21] [21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[22] [22] Woo S, Park J, Lee J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV), 2018: 3-19.
[23] [23] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[24] [24] LI C, XIA W, YAN Y, et al. Segmenting objects in day and night: edge-conditioned CNN for thermal image semantic segmentation[J].IEEE Transactions on Neural Networks and Learning Systems, 2020,32(7): 3069-3082.
Get Citation
Copy Citation Text
LI Yang, ZHANG Jie, LI Qiangqiang. Infrared Image Object Detection Algorithm Based on Improved YOLOv5[J]. Infrared Technology, 2025, 47(8): 1009