Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 10, 1445(2021)
Firesmoke detection model based on YOLOv4 with channel attention
[2] [2] GENOVESE A, LABATI R D, PIURI V, et al. Wildfire smoke detection using computational intelligence techniques [C]//Proceedings of 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications. Ottawa, ON, Canada: IEEE, 2011: 1-6.
[3] [3] SEDLK V, STOPJAKOV V, BRENKU J. A real-time method for smoke detection in monitored forest areas [C]//Proceedings of 2017 International Conference on Applied Electronics. Pilsen, Czech Republic: IEEE, 2017: 1-6.
[4] [4] GUBBI J, MARUSIC S, PALANISWAMI M. Smoke detection in video using wavelets and support vector machines [J]. Fire Safety Journal, 2009, 44(8): 1110-1115.
[6] [6] ZHANG Q X, LIN G H, ZHANG Y M, et al. Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images [J]. Procedia Engineering, 2018, 211: 441-446.
[8] [8] FRIZZI S, KAABI R, BOUCHOUICHA M, et al. Convolutional neural network for video fire and smoke detection [C]//Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society. Florence, Italy: IEEE, 2016: 877-882.
[13] [13] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2020-05-20].https: //arxiv.org/abs/2004.10934.
[14] [14] REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. (2018-04-08)[2020-05-22]. https: //arxiv.org/abs/1804.02767.
Get Citation
Copy Citation Text
XIE Shu-han, ZHANG Wen-zhu, CHEN Peng, YANG Zi-xuan. Firesmoke detection model based on YOLOv4 with channel attention[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(10): 1445
Category:
Received: Nov. 20, 2020
Accepted: --
Published Online: Nov. 6, 2021
The Author Email: XIE Shu-han (876851890@qq.com)