Journal of Semiconductors, Volume. 40, Issue 4, 041901(2019)

Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites

Haizhen Wang1,2, Chen Fang1, Hongmei Luo2, and Dehui Li1
Author Affiliations
  • 1School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, United States of America
  • show less
    References(85)

    [1] C Moure, O Peña. Recent advances in perovskites: processing and properties. Prog Solid State Chem, 43, 123(2015).

    [2] S Mtougui, R Khalladi, S Ziti et al. Magnetic properties of the perovskite BiFeO3: Monte Carlo simulation. Superlattice Microstruct, 123, 111(2018).

    [3] C Li, X Lu, W Ding et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallograph B, 64, 702(2008).

    [4] A S Bhalla, R Guo, R Roy. The perovskite structure—a review of its role in ceramic science and technology. Mater Res Innov, 4, 3(2016).

    [5] W Li, Z Wang, F Deschler et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat Rev Mater, 2, 16099(2017).

    [6] B Saparov, D Mitzi. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev, 116, 4558(2016).

    [7] T M Brenner, D A Egger, L Kronik et al. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater, 1, 15007(2016).

    [8]

    [9] H J Snaith. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Am Chem Soc, 4, 3623(2013).

    [10] M Grätzel. The light and shade of perovskite solar cells. Nat Mater, 13, 838(2014).

    [11] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [12] D Shi, V Adinolfi, R Comin et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347, 519(2015).

    [13] J S Shaikh, N S Shaikh, A D Sheikh et al. Perovskite solar cells: In pursuit of efficiency and stability. Mater Des, 136, 54(2017).

    [14] M B Johnston, L M Herz. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Accounts Chem Res, 49, 146(2015).

    [15]

    [16] K A Bush, S Manzoor, K Frohna et al. Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite–silicon tandem solar cells. ACS Energy Lett, 3, 2173(2018).

    [17] P Wangyang, C Gong, G Rao et al. Recent advances in halide perovskite photodetectors based on different dimensional materials. Adv Opt Mater, 6, 1701302(2018).

    [18] L Shen, Y Fang, D Wang et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv Mater, 28, 10794(2016).

    [19] R Dong, Y Fang, J Chae et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv Mater, 27, 1912(2015).

    [20] Y Fang, Q Dong, Y Shao et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat Photon, 9, 679(2015).

    [21] G Xing, N Mathews, S S Lim et al. Low-temperature solution-processed wavelength tunable perovskites for lasing. Nat Mater, 13, 476(2014).

    [22] Z Yuan, C Zhou, Y Tian et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat Commun, 8, 14051(2017).

    [23] G Niu, X Guo, L Wang. Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem, A, 3, 8970(2015).

    [24] Y Rong, L Liu, A Mei et al. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv Energy Mater, 5, 1501066(2015).

    [25] S H Turren-Cruz, M Saliba, M T Mayer et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ Sci, 11, 78(2018).

    [26] A Babayigit, A Ethirajan, M Muller et al. Toxicity of organometal halide perovskite solar cells. Nat Mater, 15, 247(2016).

    [27] H J Snaith, A Abate, J M Ball et al. Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett, 5, 1511(2014).

    [28] W Tress, N Marinova, T Moehl et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ Sci, 8, 995(2015).

    [29] R J Sutton, G E Eperon, L Miranda et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 6, 1502458(2016).

    [30] B Conings, J Drijkoningen, N Gauquelin et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 5, 1500477(2015).

    [31] W Nie, J C Blancon, A J Neukirch et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat Commun, 7, 11574(2016).

    [32] I C Smith, E T Hoke, D Solis-Ibarra et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem, 53, 11232(2014).

    [33] Y Chen, Y Sun, J Peng et al. 2D Ruddlesden-Popper perovskites for optoelectronics. Adv Mater, 30, 1703487(2018).

    [34] L Pedesseau, D Sapori, B Traore et al. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano, 10, 9776(2016).

    [35] C C Stoumpos, D H Cao, D J Clark et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem Mater, 28, 2852(2016).

    [36] H Shen, J Li, H Wang et al. Two-dimensional lead-free perovskite (C6H5C2H4NH3)2CsSn2I7 with high hole mobility. J Phys Chem Lett, 10, 7(2018).

    [37] C Soe, C Stoumpos, M Kepenekian et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, properties, and photovoltaic performance. J Am Chem Soc, 139, 16297(2017).

    [38] J Li, J Wang, Y Zhang et al. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Mater, 5, 021001(2018).

    [39] D Straus, N Iotov, M Gau et al. Longer cations increase energetic disorder in excitonic 2D hybrid perovskites. J Phys Chem Lett, 10, 1198(2019).

    [40] D H Cao, C C Stoumpos, O K Farha et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc, 137, 7843(2015).

    [41] K Gauthron, J Lauret, L Doyennette et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4–NH3)2–PbI4 perovskite. Opt Express, 18, 5912(2010).

    [42] Z Tan, Y Wu, H Hong et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J Am Chem Soc, 138, 16612(2016).

    [43] L N Quan, Y Zhao, F P Garcia de Arquer et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett, 17, 3701(2017).

    [44] T Matsushima, F Mathevet, B Heinrich et al. N-channel field-effect transistors with an organic–inorganic layered perovskite semiconductor. Appl Phys Lett, 109, 253301(2016).

    [45] T Matsushima, S Hwang, A S Sandanayaka et al. Solution-processed organic-inorganic perovskite field-effect transistors with high hole mobilities. Adv Mater, 28, 10275(2016).

    [46] J Wang, H Shen, W Li et al. The role of chloride incorporation in lead-free 2D perovskite (BA)2SnI4: morphology, photoluminescence, phase transition, and charge transport, and charge transport. Adv Sci, 1802019(2019).

    [47] R L Milot, R J Sutton, G E Eperon et al. Charge-carrier dynamics in 2D hybrid metal–halide perovskites. Nano Lett, 16, 7001(2016).

    [48] M Kumagai, T Takagahara. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Phys Rev B, 40, 12359(1989).

    [49] X Hong, T Ishihara, A Nurmikko. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys Rev B, 45, 6961(1992).

    [50] L N Quan, M Yuan, R Comin et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc, 138, 2649(2016).

    [51] B Liu, M Long, M Q Cai et al. Influence of the number of layers on ultrathin CsSnI3 perovskite: from electronic structure to carrier mobility. J Phys D, 51, 105101(2018).

    [52] H Tsai, W Nie, J C Blancon et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 536, 312(2016).

    [53] C Fang, H Wang, Z Shen et al. High-performance photodetectors based on lead-free 2D Ruddlesden-Popper perovskite/MoS2 heterostructures. ACS Appl Mater Interfaces, 11(2019).

    [54] R K Misra, B E Cohen, L Iagher et al. Low-dimensional organic–inorganic halide perovskite: structure, properties, and applications. ChemSusChem, 10, 3712(2017).

    [55] J Even, L Pedesseau, C Katan. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem, 15, 3733(2014).

    [56] G Grancini, C Roldán-Carmona, I Zimmermann et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat Commun, 8, 15684(2017).

    [57] Z Wang, Q Lin, F P Chmiel et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat Energy, 2, 17135(2017).

    [58] J Yan, W Qiu, G Wu et al. Recent progress on 2D/quasi-2D layered metal halide perovskites for solar cells. J Mater Chem A, 6, 11063(2018).

    [59] Y Bai, S Xiao, C Hu et al. Dimensional engineering of a graded 3D–2D halide perovskite interface enables ultrahigh Voc enhanced stability in the p–i–n photovoltaics. Adv Energy Mater, 7, 1701038(2017).

    [60] M Yuan, L N Quan, R Comin et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 11, 872(2016).

    [61] T M Koh, V Shanmugam, J Schlipf et al. Nanostructuring mixed-dimensional perovskites: a route toward tunable, efficient photovoltaics. Adv Mater, 28, 3653(2016).

    [62]

    [63] J Zhou, Y Chu, J Huang. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors. ACS Appl Mater Interfaces, 8, 25660(2016).

    [64] N Wang, L Cheng, R Ge et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photon, 10, 699(2016).

    [65] Y Y Wang, R X Gao, Z H Ni et al. Thickness identification of two-dimensional materials by optical imaging. Nanotechnology, 23, 495713(2012).

    [66] J Chen, L Gan, F Zhuge et al. A ternary solvent method for large-sized two-dimensional perovskites. Angew Chem, 129, 2430(2017).

    [67] L Dou, A B Wong, Y Yu et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349, 1518(2015).

    [68] C Fang, J Li, J Wang et al. Controllable growth of two-dimensional perovskite microstructures. CrystEngComm, 20, 6538(2018).

    [69] Z Chen, Y Wang, X Sun et al. Van Der Waals hybrid perovskite of high optical quality by chemical vapor deposition. Adv Opt Mater, 5, 201700373(2017).

    [70] L Li, J Li, S Lan et al. Two-step growth of 2D organic-inorganic perovskite microplates and arrays for functional optoelectronics. J Phys Chem Lett, 9, 4532(2018).

    [71] Y Lin, Y Bai, Y Fang et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett, 2, 1571(2017).

    [72] J Liu, J Leng, K Wu et al. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J Am Chem Soc, 139, 1432(2017).

    [73] T Hu, M D Smith, E R Dohner et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J Phys Chem Lett, 7, 2258(2016).

    [74] D Emin, T Holstein. Adiabatic theory of an electron in a deformable continuum. Phys Rev Lett, 36, 323(1976).

    [75] V V Kabanov, O Y Mashtakov. Electron localization with and without barrier formation. Phys Rev B, 47, 6060(1993).

    [76] M D Smith, A Jaffe, E R Dohner et al. Structural origins of broadband emission from layered Pb–Br hybrid perovskites. Chem Sci, 8, 4497(2017).

    [77] A Yangui, D Garrot, J S Lauret et al. Optical investigation of broadband white-light emission in self-assembled organic–inorganic perovskite (C6H11NH3)2PbBr4. J Phys Chem C, 119, 23638(2015).

    [78] J Li, J Wang, J Ma et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun, 10, 806(2019).

    [79] D Cortecchia, S Neutzner, A R S Kandada et al. Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation. J Am Chem Soc, 139, 39(2016).

    [80] X Wu, M T Trinh, D Niesner et al. Trap states in lead iodide perovskites. J Am Chem Soc, 137, 2089(2015).

    [81] D B Straus, S H Parra, N Iotov et al. Direct observation of electron–phonon coupling and slow vibrational relaxation in organic–inorganic hybrid perovskites. J Am Chem Soc, 138, 13798(2016).

    [82] Y Fu, W Zheng, X Wang et al. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J Am Chem Soc, 140, 15675(2018).

    [83] B Hwang, J S Lee. 2D Perovskite-based self-aligned lateral heterostructure photodetectors utilizing vapor deposition. Adv Opt Mater(2018).

    [84] J Wang, J Li, Q Tan et al. Controllable synthesis of two-dimensional Ruddlesden-Popper-type perovskite heterostructures. J Phys Chem Lett, 8, 6211(2017).

    [85] J Ahn, E Lee, J Tan et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater Horiz, 4, 851(2017).

    Tools

    Get Citation

    Copy Citation Text

    Haizhen Wang, Chen Fang, Hongmei Luo, Dehui Li. Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites[J]. Journal of Semiconductors, 2019, 40(4): 041901

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 18, 2019

    Accepted: --

    Published Online: Sep. 18, 2021

    The Author Email:

    DOI:10.1088/1674-4926/40/4/041901

    Topics