Advanced Imaging, Volume. 2, Issue 2, 021001(2025)

Self-supervised PSF-informed deep learning enables real-time deconvolution for optical coherence tomography On the Cover

Weiyi Zhang, Haoran Zhang, Qi Lan, Chang Liu, Zheng Li, Chengfu Gu, and Jianlong Yang*
Author Affiliations
  • School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
  • show less
    References(37)

    [15] J. M. Schmitt, Z. Liang. Deconvolution and enhancement of optical coherence tomograms, 2981, 46(1997).

    [17] J. Högbom. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. Ser., 15, 417(1974).

    [27] A. Krull, T.-O. Buchholz, F. Jug. Noise2void-learning denoising from single noisy images, 2129(2019).

    [35] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation, 234(2015).

    [37] J. Lehtinen et al. Noise2Noise: Learning image restoration without clean data(2018).

    Tools

    Get Citation

    Copy Citation Text

    Weiyi Zhang, Haoran Zhang, Qi Lan, Chang Liu, Zheng Li, Chengfu Gu, Jianlong Yang, "Self-supervised PSF-informed deep learning enables real-time deconvolution for optical coherence tomography," Adv. Imaging 2, 021001 (2025)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Article

    Received: Dec. 24, 2024

    Accepted: Feb. 11, 2025

    Published Online: Mar. 19, 2025

    The Author Email: Jianlong Yang (jyangoptics@gmail.com)

    DOI:10.3788/AI.2025.10026

    Topics