Advanced Imaging, Volume. 2, Issue 2, 021001(2025)
Self-supervised PSF-informed deep learning enables real-time deconvolution for optical coherence tomography On the Cover
[15] J. M. Schmitt, Z. Liang. Deconvolution and enhancement of optical coherence tomograms, 2981, 46(1997).
[17] J. Högbom. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. Ser., 15, 417(1974).
[27] A. Krull, T.-O. Buchholz, F. Jug. Noise2void-learning denoising from single noisy images, 2129(2019).
[35] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation, 234(2015).
[37] J. Lehtinen et al. Noise2Noise: Learning image restoration without clean data(2018).
Get Citation
Copy Citation Text
Weiyi Zhang, Haoran Zhang, Qi Lan, Chang Liu, Zheng Li, Chengfu Gu, Jianlong Yang, "Self-supervised PSF-informed deep learning enables real-time deconvolution for optical coherence tomography," Adv. Imaging 2, 021001 (2025)
Category: Research Article
Received: Dec. 24, 2024
Accepted: Feb. 11, 2025
Published Online: Mar. 19, 2025
The Author Email: Jianlong Yang (jyangoptics@gmail.com)