Laser & Infrared, Volume. 54, Issue 11, 1767(2024)

Enhanced target tracking algorithm with reversible multi-branch bimodal adaptive fusion

GENG Li-zhi, ZHOU Dong-ming*, WANG Chang-cheng, LIU Yi-song, and SUN Yi-qiu
Author Affiliations
  • School of Information Science and Engineering, Yunnan University, Kunming 650500, China
  • show less
    References(24)

    [1] [1] Lu A D, Qian C, Li C L, et al. Duality-gated mutual condition network for RGBT tracking[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022.

    [4] [4] Li Y D, Lai H C, Wang L J, et al. Multibranch adaptive fusionnetwork for RGBT tracking[J]. IEEE Sensors Journal, 2022, 22(7): 7084-7093.

    [5] [5] Yan K X, Wang C C, Zhou D M, et al. RGBT tracking viamulti-stage matching guidance and context integration[J]. Neural Processing Letters, 2023: 55(8): 11073-11087.

    [6] [6] Li C, Xue W, Jia Y, et al. LasHeR: a large-scale high-diversity benchmark for RGBT tracking[J]. IEEE Transactions on Image Processing, 2022, 31: 392-404.

    [7] [7] Wu Y, Blasch E, Chen G S, et al. Multiple source data fusionvia sparse representation for robust visual tracking[C]//14th International Conference on Information Fusion. IEEE, 2011: 1-8.

    [8] [8] Lanx A Y, YE M, Zhang S P, et al. Modality-correlation-aware sparse representation for RGB-infrared object tracking[J]. Pattern Recognition Letters, 2020, 130: 12-20.

    [9] [9] Huang Y P, Li X F, Lu R T, et al. RGB-T object tracking via sparse response-consistency discriminative correlation filters[J]. Infrared Physics & Technology, 2023, 128: 104509.

    [10] [10] Li C L, Wu X, Zhao N, et al. Fusing two-stream convolutionalneural networks for RGB-T object tracking[J]. Neurocomputing, 2018, 281: 78-85.

    [11] [11] Nam H, Hamb. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, 2016: 4293-4302.

    [12] [12] Li C L, Lu A D, Zheng A H, et al. Multi-adapter RGBT tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.

    [13] [13] Lu A D, Li C L, Yan Y Q, et al. RGBT tracking via multi-adapter network with hierarchical divergence loss[J]. IEEE Transactions on Image Processing, 2021, 30: 5613-5625.

    [14] [14] Yan K X, Mei J T, Zhou D M, et al. External-attention dual-modality fusion network for RGBT tracking[J]. The Journal of Supercomputing, 2023, (15): 79.

    [15] [15] Gao Y, Li C L, Zhu Y B, et al. Deep adaptive fusion networkfor high performance RGBT tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.

    [16] [16] Zhan H, Zhang L, Zhuo L, et al. Object tracking in RGB-T videos using modal-aware attention network and competitive learning[J]. Sensors, 2020, 20(2): 393.

    [17] [17] Hou R C, Ren T W, Wu G S. MIRNet: A robust RGBT tracking jointly with multi-modal interaction and refinement[C]//2022 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2022: 1-6.

    [18] [18] Wang X, Shu X J, Zhang S, et al. MFGNet: Dynamic modality-aware filter generation for RGB-T tracking[J]. IEEE Transactions on Multimedia, 2023, 4335-4348.

    [19] [19] Zhao Z X, Bai H W, Zhang J S, et al. CDDFuse: correlation-driven dual-branch feature decomposition for multi-modality image fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 5906-5916.

    [20] [20] Li C L, Cheng H, Hu S Y, et al. Learning collaborative sparse representation for grayscale-thermal tracking[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5743-56.

    [21] [21] Li C L, Liang X Y, Lu Y J, et al. RGB-T object tracking: benchmark and baseline[J]. Pattern Recognition, 2019, 96: 106977.

    [22] [22] Deng J, Dong W, Socher R, et al. Imagenet: a large-scalehierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009: 248-255.

    [23] [23] Cai Y X, Zhou Y Z, Han Q, et al. Reversible column networks[C]//Proceedings of the International Conference on Learning Representations, 2023.

    [24] [24] He K M, Zhang X Y, Ren S Q, et al. Deep residual learningfor image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.

    [25] [25] Liu Z, Mao H Z, Wu C Y, et al. A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11976-11986.

    [26] [26] Guo C Y, Xiao L. High speed and robust RGB-Thermal tracking via dual attentive stream Siamese network[C]//IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2022: 803-806.

    Tools

    Get Citation

    Copy Citation Text

    GENG Li-zhi, ZHOU Dong-ming, WANG Chang-cheng, LIU Yi-song, SUN Yi-qiu. Enhanced target tracking algorithm with reversible multi-branch bimodal adaptive fusion[J]. Laser & Infrared, 2024, 54(11): 1767

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 22, 2023

    Accepted: Jan. 14, 2025

    Published Online: Jan. 14, 2025

    The Author Email: ZHOU Dong-ming (zhoudm@ynu.edu.cn)

    DOI:10.3969/j.issn.1001-5078.2024.11.018

    Topics