Laser Technology, Volume. 48, Issue 4, 505(2024)
Progress in research of polymer optical fiber communication and sensing
[7] [7] SAVOVI S, DJORDJEVICH A, SAVOVI I. Theoretical investigation of bending loss in step-index plastic optical fibers[J]. Optics Communications, 2020, 475: 126200.
[11] [11] BUNGE C A, GRIES T, BECKERS M. Polymer optical fibres fibre types, materials, fabrication, characterisation and applications[M]. Duxford, UK: Woodhead Publishing Series in Electronic and Optical Materials, 2016: 120-122.
[12] [12] GROH W. Overtone absorption in macromolecules for polymer optical fibers[J]. Die Makromolekulare Chemie, 2003, 189(12): 2861-2874.
[13] [13] ULRICH H, MLADEN J. Optoelectronic key elements for polymeric fiber transmission systems[M]. London, UK: Optical Fiber Applications, 2019: 1-3.
[14] [14] AKIMOTO Y, ASAI M, KOIKE K, et al. Poly(styrene)-based graded-index plastic optical fiber for home networks[J]. Optics Letters, 2012, 37(11): 1853-1855.
[15] [15] KOIKE Y, KOIKE K. Progress in low-loss and high-bandwidth plastic optical fibers[J]. Journal of Polymer Science, 2011, B49(1): 2-17.
[16] [16] FASANO A, WOYESSA G, STAJANCA P, et al. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors[J]. Optical Materials Express, 2016, 6(2): 649-659.
[18] [18] LEAL-JUNIOR A G, DIAZ C A R, AVELLAR L M, et al. Polymer optical fiber sensors in healthcare applications: A comprehensive review[J]. Sensors, 2019, 19(14): 3156.
[19] [19] KOIKE Y, ASAI M. The future of plastic optical fiber[J]. NPG Asia Materials, 2009, 1(1): 22-28.
[20] [20] JOHNSON I, YUAN W, STEFANI A, et al. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer[J]. Electronics Letters, 2011, 47(4): 271-272.
[21] [21] MARKOS C, STEFANI A, NIELSEN K, et al. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees[J]. Optics Express, 2013, 21(4): 4758-4765.
[22] [22] EMILIYANOV G, HIBV P E, PEDERSEN L H, et al. Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers[J]. Sensors, 2013, 13(3): 3242-3251.
[23] [23] ISLAM M S, SULTANA J, ATAI J, et al. Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation[J]. Optik, 2017, 145: 398-406.
[24] [24] ISLAM M S, CORDEIOR C M B, FRANCO M A R, et al. Terahertz optical fibers [Invited][J]. Optics Express, 2020, 28(11): 16089-16117.
[25] [25] WOYESSA G, FASANO A, MARKOS C, et al. ZEONEX microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing[J]. Optical Materials Express, 2017, 7(1): 286-295.
[26] [26] LEON-SAVAL S G, LWIN R, ARGYROS A. Multicore composite single-mode polymer fiber[J]. Optics Express, 2012, 20(1): 141-148.
[28] [28] ISHIGURE T, SATO M, KONDO A. High-bandwidth graded-index polymer optical fiber with high-temperature stability[J]. Journal of Lightwave Technology, 2002, 20(8): 1443-1448.
[29] [29] ISHIGURE T, ARUGA Y, KOIKE Y. High-bandwidth PVDF-clad GI POF with ultra-low bending loss[J]. Journal of Lightwave Technology, 2007, 25(1): 335-345.
[30] [30] CHAPALO I, THEODOSIOU A, KALLI K, et al. Multimode fiber interferometer based on graded-index polymer CYTOP fiber[J]. Journal of Lightwave Technology, 2020, 38(6): 1439-1445.
[31] [31] YAMAKI Y, ASAI M, TAKAHASHI S, et al. Novel dopant for graded-index polymer optical fiber with high-thermal stability[J]. Applied Physics Express, 2010, 3(7): 071601.
[32] [32] KOIKE Y, AKIMOTO Y, ASAI M, et al. Poly(styrene)-based graded-index plastic optical fiber for home networks[J]. Optics Letters, 2012, 37(11): 1853-1855.
[33] [33] KOIKE Y, INOUE A. High-speed graded-index plastic optical fibers and their simple interconnects for 4K/8K video transmission[J]. Journal of Lightwave Technology, 2016, 34(6): 1551-1555.
[34] [34] INOUE A, KOIKE Y. Low-noise graded-index plastic optical fiber for significantly stable and robust data transmission[J]. Journal of Lightwave Technology, 2018, 36(24): 5887-5892.
[35] [35] YUAN Y, KONG D P, WANG L L. A hollow ring-core polymer optical fiber for supra-high bandwidth data communication[J]. Optics Communications, 2019, 441: 176-184.
[36] [36] MURAMOTO K, INOUE A, KOIKE Y. Noise and distortion reduction in OFDM radio-over-fiber link by graded-index plastic optical fiber[J]. IEEE Photonics Technology Letters, 2020, 32(13): 835-838.
[37] [37] ZUBAIDI F, MONTERO S D, VAZQUEZ C. SI POF supporting power-over-fiber in multi-gbit/s transmission for in-home networks[J]. Journal of Lightwave Technology, 2021, 39(1): 112-121.
[38] [38] AKASHI T, INOUE A, KOIKE Y. Low-noise graded-index plastic optical fiber achieved by specific copolymerization process[J]. Journal of Lightwave Technology, 2021, 39(11): 3553-3559.
[39] [39] WANG Y N, LIU Y P, ZHAO W Q, et al. Multi-ring-air-core fiber supporting numerous radially fundamental OAM modes[J]. Journal of Lightwave Technology, 2022, 40(13): 4420-4428.
[40] [40] MATSUURA M. Power-over-fiber using double-clad fibers[J]. Journal of Lightwave Technology, 2022, 40(10): 3187-3196.
[41] [41] LIU J, XU T S, ZHONG M H, et al. A W-type double-cladding IR fiber with ultra-high numerical aperture[J]. Journal of Lightwave Technology, 2021, 39(7): 2158-2163.
[42] [42] CI Y J, REN F, LEI X, et al. A weakly-coupled air-hole-bow-tie-assisted few-mode fiber for short-haul MDM across C+L band[J]. Optical and Quantum Electronics, 2023, 55(10): 924.
[43] [43] YANG Zh X, ZHAO Y F, ZHANG Y F, et al. A novel few-mode multi-core fiber with large effective mode area and low inter-core crosstalk[J]. Optik, 2023, 273: 170416.
[44] [44] HABIB M A, REZA M S, ABDULARAZAK L F, et al. Extremely high birefringent and low loss microstructure optical waveguide: Design and analysis[J]. Optics Communications, 2019, 446: 93-99.
[45] [45] RAHAMAN M E, MONDAL H S, HOSSAIN M B, et al. Simulation of a highly birefringent photonic crystal fiber in terahertz frequency region[J]. SN Applied Sciences, 2020, 2(8): 1435.
[46] [46] EIJKELENBORG M, ARGYROS A, ZAGARI J, et al. Microstructured polymer optical fibre[J]. Optics Express, 2001, 9(7): 319-327.
[49] [49] MA T, MARKOV A, WANG L L, et al. Graded index porous optical fibers-dispersion management in terahertz range[J]. Optics Express, 2015, 23(6): 7856-7869.
[50] [50] ISLAM M S, SULTANA J, DINOVITSER A, et al. A novel ZEONEX based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications[J]. Optics Communications, 2018, 413: 242-248.
[51] [51] MEI S, KONG D P, WANG L L, et al. Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission[J]. Optical Fiber Technology, 2019, 52: 101946.
[52] [52] HABIB M A, ANOWER M S, HASAN M R. Highly birefringent and low effective material loss microstructure fiber for THz wave guidance[J]. Optics Communications, 2018, 423: 140-144.
[53] [53] HABIB A, ANOWER S. Low loss highly birefringent porous core fiber for single mode terahertz wave guidance[J]. Current Optics and Photonics, 2018, 2(3): 215-220.
[54] [54] ISLAM M S, SULTANA J, FAISAL M, et al. A modified hexagonal photonic crystal fiber for terahertz applications[J]. Optical Materials, 2018, 79: 336-339.
[55] [55] SULTANA J, ISLAM M S, FAISAL M, et al. Highly birefringent elliptical core photonic crystal fiber for terahertz application[J]. Optics Communications, 2018, 407: 92-96.
[56] [56] HABIB M A, ANOWER M S. Design and numerical analysis of highly birefringent single mode fiber in THz regime[J]. Optical Fiber Technology, 2019, 47: 197-203.
[57] [57] HABIB M A, ANOWER M S. Square porous core microstructure fiber for low loss terahertz applications[J]. Optics and Spectroscopy, 2019, 126(5): 607-613.
[58] [58] YAKASAI I K, ABAS P E, ALI S, et al. Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation[J]. Optical and Quantum Electronics, 2019, 51(4): 122.
[59] [59] UPADHYAY A, SINGH S, TAYA S, et al. A highly birefringent bend-insensitive porous core PCF for endlessly single-mode operation in THz regime: An analysis with core porosity[J]. Applied Nanoscience, 2021, 11(3): 1021-1030.
[60] [60] CHEN H B, CHEN D R, HONG Zh. Squeezed lattice elliptical-hole terahertz fiber with high birefringence[J]. Applied Optics, 2009, 48(20): 3943-3947.
[61] [61] FAISAL M, ISLAM M S. Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted airholes[J]. Journal of Applied Optics, 2018, 57(13): 3340-3347.
[62] [62] ISLAM M S, FAISAL M, ABDUR R. Dispersion flattened extremely high-birefringent kagome lattice elliptic core photonic crystal fiber in THz regime[J]. Optical and Quantum Electronics, 2019, 51(1): 35.
[63] [63] AHMED F, ROY S, AHMED K. A novel star shape photonic crystal fiber for low loss terahertz pulse propagation[J]. Nano Communication Networks, 2019, 19: 26-32.
[64] [64] SINGER A M, HAMEED M F, HEIKAL A M, et al. Highly birefringent slotted core photonic crystal fiber for terahertz waveguiding[J]. Optical and Quantum Electronics, 2021, 53(1): 9.
[65] [65] AMINUL I M, RAKIBUL I M, MOINUL I K M, et al. Highly birefringent slotted core photonic crystal fiber for THz wave propagation[J]. Physics of Wave Phenomena, 2020, 28: 58-67.
[66] [66] ISLAM M A, ISLAM M R, TASNIM Z, et al. Low-loss and dispersion-flattened octagonal porous core PCF for terahertz transmission applications[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44(4): 1583-1592.
[67] [67] JIBON R H, BULBUL A, NAHID A, et al. Design and numerical analysis of a photonic crystal fiber (PCF)-based flattened dispersion THz waveguide[J]. Optical Review, 2021, 28(5): 564-572.
[68] [68] ASADUZZAMAN S, REHANA H, BHUIYAN T, et al. Extremely high birefringent slotted core umbrella-shaped photonic crystal fiber in terahertz regime[J]. Applied Physics, 2022, B128(8): 148.
[69] [69] HOSSAIN M S, SEN S, HOSSAIN M M. Reduction of effective material loss (EML) using decagonal photonic crystal fiber (D-PCF) for communication applications in the terahertz wave pulse[J]. Optical and Quantum Electronics, 2022, 54(10): 658.
[70] [70] MEI S, KONG D P, MU Q Y, et al. A porous core ZEONEX THz fiber with low loss and small dispersion[J]. Optical Fiber Technology, 2022, 69: 102834.
[71] [71] XUE L, SHENG X Zh, JIA H Q, et al. Single-polarization low loss terahertz hollow-core anti-resonant fiber with high polarization loss ratio[J]. Optics Communications, 2023, 537: 129460.
[72] [72] TANVIR J, AKHTAR S, TAHHAN S R, et al. Terahertz spectroscopic based bending effect inspection on hollow-core anti-resonant fiber[J]. Optical and Quantum Electronics, 2023, 55(4): 305.
[73] [73] CHEN J, TENG Ch X, KUANG R F, et al. Plastic optical fiber integrated with smartphone for gait monitoring[J]. IEEE Sensors Journal, 2023, 23(16): 18207-18218.
[74] [74] TOMMASI F D, MASSARONI C, CAPONERO M A, et al. FBG-based mattress for heart rate monitoring in different breathing conditions[J]. IEEE Sensors Journal, 2023, 23(13): 14114-14122.
[75] [75] CHEN P N, WANG B J, PENG H Sh, et al. Application challenges in fiber and textile electronics[J]. Advanced Materials, 2020, 32(5): 1901971.
[76] [76] QUANDT B M, BRAUN F, FERRARIO D, et al. Body-monitoring with photonic textiles: A reflective heartbeat sensor based on polymer optical fibres[J]. Journal of the Royal Society Interface, 2017, 14(8): 20170060.
[77] [77] HASEDA Y, BONEFACINO J, TAM H Y, et al. Measurement of pulse wave signals and blood pressure by a plastic optical fiber FBG sensor[J]. Sensors, 2019, 19(23): 5088.
[78] [78] LIANG H W, WANG Y Y, KAN L L, et al. Wearable and multifunctional self-mixing microfiber sensor for human health monitoring[J]. IEEE Sensors Journal, 2023, 23(3): 2122-2127.
[79] [79] PANG Y N, LIU B, LIU J, et al. Singlemode-multimode-singlemode optical fiber sensor for accurate blood pressure monitoring[J]. Journal of Lightwave Technology, 2022, 40(13): 4443-4450.
[80] [80] PRESTI D, MASSARONI C, D'ABBRACCIO J, et al. Wearable system based on flexible FBG for respiratory and cardiac monitoring[J]. IEEE Sensors Journal, 2019, 19(17): 7391-7398.
[81] [81] PANG Y N, LIU B, LIU J, et al. Wearable optical fiber sensor based on a bend singlemode-multimode-singlemode fiber structure for respiration monitoring[J]. IEEE Sensors Journal, 2021, 21(4): 4610-4617.
[82] [82] LEAL-JUNIOR A G, DíAZ C R, LEITO C, et al. Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements[J]. Optics & Laser Technology, 2019, 109: 429-436.
[83] [83] GOMES G L, MELLO R, LEAL-JUNIOR A. Respiration frequency rate monitoring using smartphone-integrated polymer optical fibers sensors with cloud connectivity[J]. Optical Fiber Technology, 2023, 78: 103313.
[84] [84] KUANG R F, YE Y F, CHEN Z Y, et al. Low-cost plastic optical fiber integrated with smartphone for human physiological monitoring[J]. Optical Fiber Technology, 2022, 71: 102947.
[85] [85] ARMAN A, DANIELE T. Optical fiber sensor based on plastic optical fiber and smartphone for measurement of the breathing rate[J]. IEEE Sensors Journal, 2019, 19(9): 3282-3287.
[86] [86] HAN P, LI L Q, ZHANG H, et al. Low-cost plastic optical fiber sensor embedded in mattress for sleep performance monitoring[J]. Optical Fiber Technology, 2021, 64: 102541.
[87] [87] XU W, SHEN Y, YU Ch Y, et al. Long modal interference in multimode fiber and its application in vital signs monitoring[J]. Optics Communications, 2020, 474: 126100.
[88] [88] LEBER A, CHOLST B, SANDT J, et al. Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations[J]. Advanced Functional Materials, 2019, 29(5): 1802629.
[89] [89] BAI H D, LI Sh, TU Y Q, et al. Stretchable distributed fiber-optic sensors[J]. Science, 2020, 370(6518): 848-852.
[90] [90] LI H, LI H B, LOU X P, et al. Soft optical fiber curvature sensor for finger joint angle proprioception[J]. Optik, 2019, 179: 298-304.
[91] [91] ABRO Z, HONG Ch Y, CHEN N L, et al. A fiber Bragg grating-based smart wearable belt for monitoring knee joint postures[J]. Textile Research Journal, 2019, 90(3/4): 386-394.
[92] [92] REZENDE A, ALVES C, MARQUES I, et al. Polymer optical fiber goniometer: A new portable, low cost and reliable sensor for joint analysis[J]. Sensors, 2018, 18(12): 4293.
[93] [93] LI J, LIU J, LI Ch, et al. Wearable wrist movement monitoring using dual surface-treated plastic optical fibers[J]. Materials, 2020, 13(15): 3291.
[94] [94] LEAL-JUNIO A, GUO J J, MIN R, et al. Photonic smart bandage for wound healing assessment[J]. Photonics Research, 2020, 9(3): 272.
[95] [95] TANG Z J, GOMEZ D, HE Ch Y, et al. A U-shape fibre-optic pH sensor based on hydrogen bonding of ethyl cellulose with a sol-gel matrix[J]. Journal of Lightwave Technology, 2021, 39(5): 1557-1564.
[96] [96] FENG Y G, JU L H, JIA H, et al. Intentionally light-loss carbon-optic fiber (COF) twisted sensor for calf strength sensing via monitoring vastus medialis[J]. IEEE Sensors Journal, 2023, 23(9): 9271-9279.
[97] [97] IQBAL F, BISWAS S, BULBUL A, et al. Alcohol sensing and classification using PCF-based sensor[J]. Sensing and Bio-Sensing Research, 2020, 30: 100384.
[98] [98] HOSSAIN M S, HUSSAIN N, HOSSAIN Z, et al. Performance analysis of alcohols sensing with optical sensor procedure using circular photonic crystal fiber (C-PCF) in the terahertz regime[J]. Sensing and Bio-Sensing Research, 2022, 35: 100469.
[99] [99] GOWRI A, ALLWYN R, RAMAKRISHNA B, et al. U-bent plastic optical fiber probes as refractive index based fat sensor for milk quality monitoring[J]. Optical Fiber Technology, 2019, 47: 15-20.
[100] [100] ZHAO H X, WANG F, WANG Zh Y, et al. Refractive index sensor based on a gradually hot-pressed flatted plastic optical fiber[J]. Optics Communications, 2023, 532: 129258.
[101] [101] LIU X J, QU Ch F, ZHOU S J, et al. Simple and stable gas-liquid two-phase optical fiber sensor for acetone based on cholesteric liquid crystal[J]. Optics Communications, 2023, 526: 128890.
[102] [102] BAO L F, DONG X Y, SHEN Ch Y, et al. High sensitivity liquid level sensor based on a hollow core fiber structure[J]. Optics Communications, 2021, 499: 127279.
[103] [103] YE Y F, ZHAO Ch J, WANG Zh, et al. Portable multihole plastic optical fiber sensor for liquid-level and refractive index monitoring[J]. IEEE Sensors Journal, 2023, 23(3): 2161-2168.
[104] [104] REZA S, HABIB A. Extremely sensitive chemical sensor for terahertz regime based on a hollow-core photonic crystal fibre[J]. Ukrainian Journal of Physical Optics, 2020, 21(1): 8-14.
[105] [105] KHAN M, ALI F, ISLAM M. THz sensing of CoViD-19 disinfecting products using photonic crystal fiber[J]. Sensing and Bio-Sensing Research, 2021, 33(3): 100447.
[106] [106] JIBON R H, RAHAMAN M E, ALAHE M A. Detection of primary chemical analytes in the THz regime with photonic crystal fiber[J]. Sensing and Bio-Sensing Research, 2021, 33: 100427.
[107] [107] HASAN M, PANDEY T, HABIB M. Highly sensitive hollow-core fiber for spectroscopic sensing applications[J]. Sensing and Bio-Sensing Research, 2021, 34(4): 100456.
[108] [108] ISLAM M S, SULTANA J, DINOVITSER A, et al. Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime[J]. Optics Communications, 2018, 426: 341-347.
[109] [109] AHMED K, AHMED F, ROY S, et al. Refractive index-based blood components sensing in terahertz spectrum[J]. IEEE Sensors Journal, 2019, 19(9): 3368-3375.
[110] [110] BULBUL A, JIBON R, DAS S, et al. PCF based formalin detection by exploring the optical properties in THz regime[J]. Nanoscience & Nanotechnology-Asia, 2021, 11(3): 314-321.
[111] [111] MONIR M, UDDIN M, SEN S. Design of a novel photonic crystal fiber and numerical analysis of sensitivity for the detection of illegal drugs in terahertz regime[J]. Sensing and Bio-Sensing Research, 2023, 39(4): 100551.
[112] [112] YAKASAI I K, ABAS P L, BEGUM F. Proposal of novel photonic crystal fibre for sensing adulterated petrol and diesel with kerosene in terahertz frequencies[J]. IET Optoelectronics, 2020, 14(5): 319-326.
[113] [113] HOSSAIN M B, PODDER E, MONDAL H S, et al. Bane chemicals detection through photonic crystal fiber in THz regime[J]. Optical Fiber Technology, 2020, 54: 102102.
[114] [114] FERDOUS A, ANOWER M, MUSHA M A, et al. A heptagonal PCF-based oil sensor to detect fuel adulteration using terahertz spectrum[J]. Sensing and Bio-Sensing Research, 2022, 36: 100485.
[115] [115] ZHAO H X, WANG F, CHENG P H. A plastic optic fiber sensor with temperature compensation for refractive index measurement[J]. Optical Fiber Technology, 2023, 79(2): 103365.
[116] [116] TIAN K, FARRELL G, LEWIS E, et al. A high sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating[J]. Measurement Science and Technology, 2018, 29(8): 085104.
[117] [117] GUO J J, ZHOU B Q, YANG Ch X, et al. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring[J]. Advanced Functional Materials, 2019, 29(33): 1902898.
[118] [118] SUI K Y, IOANNOU A, MENEGHETTI M, et al. Temperature sensing of the brain enabled by directly inscribed Bragg gratings in CYTOP polymer optical fiber implants[J]. Optical Fiber Technology, 2023, 80: 103478.
[119] [119] LEAL-JUNIOR A, FRIZERA-NETO A, MARQUES C, et al. A polymer optical fiber temperature sensor based on material features[J]. Sensors, 2018, 18(1): 301.
[120] [120] SU H Y, ZHANG Y D, MA K, et al. Tip packaged high-temperature miniature sensor based on suspended core optical fiber[J]. Journal of Lightwave Technology, 2020, 38(15): 4160-4165.
[121] [121] KHAN M. Development of a highly sensitive and low hysteresis temperature sensing system with PEDOT: PSS containing polymer sensing membrane[J]. IEEE Sensors Journal, 2023, 23(1): 669-676.
[122] [122] WANG H X, LIAO M M, XIAO H F, et al. High sensitivity temperature sensor based on a PDMS-assisted bow-shaped fiber structure[J]. Optics Communications, 2021, 481: 126536.
[123] [123] LIU Q P, WANG D Y, WANG Ch F, et al. Ultrasensitive temperature sensor based on optic fiber Fabry-Pérot interferometer with vernier effect[J]. Optics Communications, 2023, 541: 129567.
[124] [124] HU J H, LI D, LIU Zh G, et al. Polymer-coated fiber-optic Fabry-Perot interferometer-based temperature sensor with high sensitivity[J]. Optical Fiber Technology, 2023, 81: 103471.
[125] [125] YANG T Y, LIU Ch, LIU X, et al. Fiber optic high temperature sensor based on ZnO composite graphene temperature sensitive material[J]. Optics Communications, 2022, 515: 128222.
[126] [126] QIU Sh, YUAN J H, ZHOU X, et al. Highly sensitive temperature sensing based on all-solid cladding dual-core photonic crystal fiber filled with the toluene and ethanol[J]. Optics Communications, 2020, 477: 126357.
[127] [127] WANG X Y, WANG Y, LING Q, et al. Seven-core fiber embedded ultra-long period grating for curvature, torsion or temperature sensing[J]. Optics Communications, 2023, 536: 129351.
[128] [128] LEI X Q, FENG Y, DONG X P. High-temperature sensor based on a special thin-diameter fiber[J]. Optics Communications, 2020, 463: 125386.
[129] [129] PIZZAIA J P L, CASTELLANI C E S, LEAL-JUNIOR A G. Highly sensitive temperature sensing based on a birefringent fiber Sagnac loop[J]. Optical Fiber Technology, 2022, 72: 102949.
[130] [130] LIU Q P, WANG Ch F, LIU W F, et al. Large-range and high-sensitivity fiber optic temperature sensor based on Fabry-Pérot interferometer combined with FBG[J]. Optical Fiber Technology, 2022, 68: 102794.
[131] [131] ZHANG Y X, YU J J, LIU P L, et al. All-fiber temperature and humidity sensor based on photopolymer and polydimethylsiloxane with low-crosstalk and high-sensitivity[J]. Optical Fiber Technology, 2023, 80: 103410.
[132] [132] LIU J X, XU M J, ABBAS L G, et al. High-sensitivity temperature sensor based on Mach-Zehnder interference of asymmetric taper-shaped ultraviolet glue[J]. Optical Fiber Technology, 2022, 72: 102997.
[133] [133] DUPUIS A, GUO N, GAO Y, et al. Prospective for biodegradable microstructured optical fibers[J]. Optics Letters, 2007, 32(2): 109-111.
[134] [134] SHADMAN S, NGUYEN-DANG T, DAS T, et al. Microstructured biodegradable fibers for advanced control delivery[J]. Advanced Functional Materials, 2020, 30(13): 1910283.
[135] [135] GIEREJ A, ROCHLITZ K, FILIPKOWSKI A, et al. Microstructured optical fiber made from biodegradable and biocompatible poly(D, L-Lactic Acid) (PDLLA)[J]. Journal of Lightwave Technology, 2023, 41(1): 275-285.
[136] [136] ZHANG Y X, NING Y G, ZHANG M, et al. Spider silk-based fiber magnetic field sensor[J]. Journal of Lightwave Technology, 2021, 39(20): 6631-6636.
[137] [137] ORELMA H, HOKKANEN A, LEPPNEN I, et al. Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications[J]. Cellulose, 2020, 27(3): 1543-1553.
[138] [138] FUJIWARA E, CABRAL T D, SATO M, et al. Agarose-based structured optical fibre[J]. Scientific Reports, 2020, 10: 7035.
[139] [139] GUO J J, LIU X Y, NAN J, et al. Highly stretchable, strain sensing hydrogel optical fibers[J]. Advanced Materials, 2016, 28(46): 10244-10249.
[140] [140] MISHRA A, DéSéVéDAVY F, PETIT L, et al. Core-clad phosphate glass fibers for biosensing[J]. Materials Science and Engineering, 2019, C96(1): 458-465.
[141] [141] PANG W, XIAO Z Y, WEI X B, et al. Biocompatible polymer optical fiber with a strongly scattering spherical end for interstitial photodynamic therapy[J]. Optics Letters, 2023, 48(15): 3849-3852.
[142] [142] JORGENSON R C, YEE S S. A fiber-optic chemical sensor based on surface plasmon resonance[J]. Sensors and Actuators, 1993, B12(3): 213-220.
[143] [143] LIU W, LIU Zh H, ZHANG Y, et al. Specialty optical fibers and 2D materials for sensitivity enhancement of fiber optic SPR sensors: A review[J]. Optics & Laser Technology, 2022, 152(5): 108167.
[144] [144] JING G, ZHOU J Q, LI K W, et al. Refractive index sensing based on a side-polished macrobend plastic optical fiber combining surface plasmon resonance and macrobending loss[J]. IEEE Sensors Journal, 2019, 19(14): 5665-5669.
[145] [145] CENNAMO N, ARCADIO F, MARLETTA V, et al. A magnetic field sensor based on SPR-POF platforms and ferrofluids[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9504010.
[146] [146] ZHANG Q, LIU H L, LI B, et al. High sensitivity surface plasmon resonance magnetic field sensor based on Au/gold nanoparticles/magnetic fluid in the hollow core fiber[J]. IEEE Sensors Journal, 2023, 23(12): 12899-12905.
[147] [147] WANG Y, WANG J G, SHAO Y, et al. Highly sensitive surface plasmon resonance humidity sensor based on a polyvinyl-alcohol-coated polymer optical fiber[J]. Biosensors, 2021, 11(11): 461.
[148] [148] TENG Ch X, LI M S, CHENG Y, et al. Investigation of U-shape tapered plastic optical fibers based surface plasmon resonance sensor for RI sensing[J]. Optik, 2022, 251: 168461.
[149] [149] XUE P, XU Y, QI J, et al. Mechanically hot-pressed flattened plastic optical fiber-based SPR sensor and its RI sensing[J]. Optics Communications, 2022, 522: 128635.
[150] [150] ARCADIO F, ZENI L, CENNAMO N. Exploiting plasmonic phenomena in polymer optical fibers to realize a force sensor[J]. Sensors, 2022, 22(6): 2391.
[151] [151] LU Y P, TIAN F J, CHEN Y Zh, et al. Characteristics of a capillary single core fiber based on SPR for hydraulic pressure sensing[J]. Optics Communications, 2023, 530: 129125.
[152] [152] LIU B, LIU J, PING L, et al. Rapid detection of SARS-CoV-2 nucleocapsid protein by a label-free biosensor based on optical fiber cylindrical micro-resonator[J]. IEEE Sensors Journal, 2023, 23(12): 12511-12518.
[153] [153] WEI Y, LIU Ch B, ZHANG Y H, et al. All-Fiber SPR microfluidic chip for arctigenin detection[J]. IEEE Sensors Journal, 2023, 23(12): 12838-12844.
[154] [154] HU J, SONG E L, LIU Y H, et al. Fiber laser-based lasso-shaped biosensor for high precision detection of cancer biomarker-CEACAM5 in serum[J]. Biosensors, 2023, 13(7): 674.
[155] [155] D'MELLO Y, SKORIC J, MOUKARZEL L, et al. Wearable fiber optic sensors for biomechanical sensing via joint angle detection[C]// Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Berlin, Germang: IEEE Engineering in Medicine and Biology Society, 2019: 32221-33225.
[156] [156] CENNAMO N, D'AGOSTINO G, PERRI C, et al. Proof of concept for a quick and highly sensitive on-site detection of SARS-CoV-2 by plasmonic optical fibers and molecularly imprinted polymers[J]. Sensors, 2021, 21(5): 1681.
[157] [157] CENNAMO N, PASQUARDINI L, ARCADIO F, et al. SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor[J]. Talanta, 2021, 233: 122532.
[158] [158] CENNAMO N, AGOSTINO G D, PASQUARDINI L, et al. (INVITED) Quantitative detection of SARS-CoV-2 virions in aqueous mediums by IoT optical fiber sensors[J]. Results in Optics, 2021, 5: 100177.
[159] [159] HABIB A, RASHED A, HAGEEN H M, et al. Extremely sensitive photonic crystal fiber-based cancer cell detector in the terahertz regime[J]. Plasmonics, 2021, 16(4): 1297-1306.
[160] [160] MOHAMMED N A, KHEDR O E, RABAIE E M, et al. Early detection of brain cancers biomedical sensor with low losses and high sensitivity in the terahertz regime based on photonic crystal fiber technology[J]. Optical and Quantum Electronics, 2023, 55(3): 230.
[161] [161] DAS S, MANDAL B, RAO V R, et al. Detection of tomato leaf curl new delhi virus DNA using U-bent optical fiber-based LSPR probes[J]. Optical Fiber Technology, 2022, 74: 103108.
[162] [162] ALAM M K, VADIVEL K, NATESAN A, et al. Design of highly sensitive biosensors using hollow-core microstructured fibers for plasma sensing in aids with human metabolism[J]. Optical and Quantum Electronics, 2023, 55(2): 188.
[163] [163] GAMAL Y, YOUNIS B M, FURNISS D, et al. Mid-infrared water pollutant sensor based on SPR-PCF[J]. Optical and Quantum Electronics, 2023, 55(11): 966.
[164] [164] CENNAMO N, ZENI L, TORTORA P, et al. A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment[J]. Talanta, 2018, 178(258): 955-961.
[165] [165] FAIZ F, CRAN M J, ZHANG J H, et al. Graphene oxide doped alginate coated optical fiber sensor for the detection of perfluorooctanoic acid in water[J]. IEEE Sensors Journal, 2023, 23(12): 12861-12867.
[166] [166] CENNAMO N, ZENI L, RICCA E, et al. Detection of naphthalene in sea-water by a label-free plasmonic optical fiber biosensor[J]. Talanta, 2019, 194: 289-297.
[167] [167] TENG Ch X, SHAO P, LI Sh W, et al. Double-side polished U-shape plastic optical fiber based SPR sensor for the simultaneous measurement of refractive index and temperature[J]. Optics Communications, 2022, 525: 128844.
[168] [168] TIAN Sh, XIONG M, CHEN M, et al. Highly sensitive cascaded fiber SPR sensor with temperature compensation[J]. Optics Communications, 2023, 533: 129277.
[169] [169] HIRAI Y, SUZUKI Y, MORISAWA M. Two-wavelength dye-doped swellable clad POF humidity sensor[J]. IEEE Sensors Journal, 2023, 23(8): 8435-8442.
[170] [170] ZHANG M Zh, ZHU G X, LI T Sh, et al. A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water[J]. Optics Communications, 2020, 462: 124750.
[171] [171] ZHANG Ch L, ZHANG X D, LIU C, et al. Corrosion sensor based on surface plasmon resonance effect of core-offset splicing fiber[J]. Optical Fiber Technology, 2023, 80: 103412.
[172] [172] CAO Sh Q, SHAO Y, WANG Y, et al. Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber[J]. Optics Express, 2018, 26(4): 3988-3994.
[173] [173] ARCAS A D S, DUTRA F D S, ALLIL R C S B, et al. Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors[J]. Sensors, 2018, 18(2): 648.
[174] [174] PESAVENTO M, PROFUMO A, MERLI D, et al. An optical fiber chemical sensor for the detection of copper(Ⅱ) in drinking water[J]. Sensors, 2019, 19(23): 5246.
[175] [175] PESAVENTO M, ZENI L, LETIZIA D, et al. SPR-optical fiber-molecularly imprinted polymer sensor for the detection of furfural in wine[J]. Biosensors, 2021, 11(3): 72.
Get Citation
Copy Citation Text
LIU Yuxuan, XIE Jianda. Progress in research of polymer optical fiber communication and sensing[J]. Laser Technology, 2024, 48(4): 505
Category:
Received: Jul. 4, 2023
Accepted: Dec. 2, 2024
Published Online: Dec. 2, 2024
The Author Email: XIE Jianda (xiejianda@xmut.edu.cn)