Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0610004(2023)
Small-Target Detection Network Based on Adaptive Feature Enhancement
[2] Jiao L C, Zhang F, Liu F et al. A survey of deep learning-based object detection[J]. IEEE Access, 7, 128837-128868(2019).
[3] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[4] He K M, Gkioxari G, Dollár P et al. Mask R-CNN[C], 2980-2988(2017).
[5] Wang F S, Wang Q S, Chen J G et al. Improved Faster R-CNN target detection algorithm based on attention mechanism and Soft-NMS[J]. Laser & Optoelectronics Progress, 58, 2420001(2021).
[6] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[7] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767
[9] Liu F, Guo M, Wang X J. Small target detection based on cross-scale fusion convolution neural network[J]. Laser & Optoelectronics Progress, 58, 0610012(2021).
[10] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).
[12] Geng P Z, Yang Z X, Zhang J J et al. Pedestrian shoes detection algorithm based on SSD[J]. Laser & Optoelectronics Progress, 58, 0610009(2021).
[13] Lin T Y, Maire M, Belongie S et al. Microsoft COCO: common objects in context[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8693, 740-755(2014).
[14] Chen G, Wang H T, Chen K et al. A survey of the four Pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 936-953(2022).
[15] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[16] Liu S, Qi L, Qin H F et al. Path aggregation network for instance segmentation[C], 8759-8768(2018).
[17] Tan M X, Pang R M, Le Q V. EfficientDet: scalable and efficient object detection[C], 10778-10787(2020).
[18] Wang Y N, Wang X L. Remote sensing image target detection model based on attention and feature fusion[J]. Laser & Optoelectronics Progress, 58, 0228003(2021).
[19] Liu X, Chen S Y, Chen X L et al. Deep multi-scale feature fusion target detection algorithm based on deep learning[J]. Laser & Optoelectronics Progress, 58, 1210029(2021).
[20] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).
[21] Zheng Z H, Wang P, Liu W et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).
[22] Du D W, Qi Y K, Yu H Y et al. The unmanned aerial vehicle benchmark: object detection and tracking[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11214, 375-391(2018).
[23] Dai J F, Li Y, He K M et al. R-FCN: object detection via region-based fully convolutional networks[C], 379-387(2016).
[24] Kong T, Sun F C, Yao A B et al. RON: reverse connection with objectness prior networks for object detection[C], 5244-5252(2017).
[25] Yang F, Fan H, Chu P et al. Clustered object detection in aerial images[C], 8310-8319(2019).
[26] Li C L, Yang T, Zhu S J et al. Density map guided object detection in aerial images[C], 737-746(2020).
Get Citation
Copy Citation Text
Mengmeng Wu, Zebin Zhang, Yaozhe Song, Ziting Shu, Baoqing Li. Small-Target Detection Network Based on Adaptive Feature Enhancement[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0610004
Category: Image Processing
Received: Nov. 24, 2021
Accepted: Jan. 14, 2022
Published Online: Mar. 16, 2023
The Author Email: Baoqing Li (sinoiot@mail.sim.ac.cn)