Journal of Infrared and Millimeter Waves, Volume. 44, Issue 1, 52(2025)
Research of terahertz frequency tunable coding metasurface based on perovskite materials
[1] Ghafoor S, Boujnah N, Rehmani M H. Tutorials, MAC protocols for terahertz communication: A comprehensive survey[J]. IEEE Communications Surveys, 22, 2236-2282(2020).
[2] Valušis G, Lisauskas A, Yuan H, Knap W, Roskos H G. Roadmap of terahertz imaging[J]. Sensors, 21, 4092(2021).
[3] Song H. -J and Lee N. Technology, Terahertz communications: Challenges in the next decade[J]. IEEE Trans. Terahertz Sci. Technol, 12, 105-117(2021).
[4] Li Y F, Yang R et al. Simulation of terahertz metasurface controlled by light field based on novel perovskite materials[J]. High Power Laser and Particle Beams.
[5] Zhou C, Peng X. -q, Li. Graphene-embedded coding metasurface for dynamic terahertz manipulation[J]. Optik, 216, 164937(2020).
[6] Wang R, Deng B, Wang H, Zhou F. JApplications, Scattering cross section of rough metallic spheres at terahertz frequencies[J]. Journal of Electromagnetic Waves, 36, 1-17(2022).
[7] Satapathy A, Sawant K K, Mondal S. Recent progress on MXenes as an attenuator of terahertz radiation[, 52, 1749-1768(2023).
[8] Ri K. -J,Kim J.-S,Kim J.-H, Tunable triple-broadband terahertz metamaterial absorber using a single VO2 circular ring[J]. Opt. Commun, 542, 129573(2023).
[9] Wang X, Xiao Z, Wang X, Miao X, Jiang X, Tunable and switchable common-frequency broadband terahertz absorption. reflection and transmission based on graphene-photosensitive silicon metamaterials[J]. Opt. Commun, 541, 129555(2023).
[10] Ni X, Liu Z, Gu F, Pacheco M, Borneman J, PhotonicsSHA-2D. Modeling of Single-Period Multilayer Optical Gratings and Metamaterials[J]. Computational program(2009).
[11] Yu J J, Xie Y et al. State-of-art of Metamaterials with Negative Poisson's Ratio[J] Journal of Mechanical Engineering(于靖军,谢岩,负泊松比超材料研究进展[J]. 机械工程学报), 54, 1-14(2018).
[12] Zhang Z, Pang H, Georgiadis A, Wireless power transfer—An overview[J]. IEEE Trans. Ind. Electron., 66, 1044-1058(2018).
[13] Yan X, Yang M, Zhang Z, Liang, Bioelectronics. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors, 126, 485-492(2019).
[14] Bai L, Zhang X G, Jiang W X. Research progress of light-controlled electromagnetic metamaterials[J].
[15] Li J, Li J, Zheng C et al. Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging[J]. Carbon, 172, 189-199(2021).
[16] Zhang L, Chen X Q, Zheng Y N et al. Electromagnetic metasurfaces and information metasurfaces[J]. Chinese journal of radio science(张磊, 36, 817-828(2021).
[17] Guo C B, Zhao Z, Xu W K. Research advances of acoustic Metasurfaces[J]. Science Technology and Engineering.
[18] Yu N, Genevet P et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. science, 334, 333-337(2011).
[19] Li L, Ruan H et al. Machine-learning reprogrammable metasurface imager[J]. Nature communications, 10, 1082(2019).
[20] Zhao J, Yang X et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J], 6, 231-238(2019).
[21] Li Q, Gupta M et al. Active control of asymmetric Fano resonances with graphene-silicon-integrated terahertz metamaterials[J]. Adv. Mater. Technol, 5, 1900840(2020).
[22] Cong L, Singh R et al. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams[J]. Adv. Mater, 32, 2001418(2020).
[23] Wu G. -B,, Dai J Y, et al. Sideband-free space–time-coding metasurface antennas[J]. Nat. Electron, 5, 808-819(2022).
[24] Saifullah Y, He Y et al. Recent progress in reconfigurable and intelligent metasurfaces: A comprehensive review of tuning mechanisms, hardware designs, and applications[J]. Adv. Sci, 9, 2203747(2022).
[25] Yao X, Ding Y L, Zhang X D et al. A review of the perovskite solar cells. Acta Phys. Sin[J](姚鑫,丁艳丽,张晓丹, 钙钛矿太阳电池综述[J]. 物理学报), 64, 038404(2015).
[26] Zhang Y, Du J et al. Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films[J]. ACS applied materials, 7, 21634-21638(2015).
[27] Li C, Han C et al. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films[J]. Sol. Energy Mater, 172, 341-346(2017).
[28] Zhao Y, Li C, Recent advances on organic‐inorganic hybrid perovskite photodetectors with fast response[J]. InfoMat, 1, 164-182(2019).
[29] Soleimanioun N, Rani M et al. Potential replacement to lead: Alkali metal potassium and transition metal zinc in organo-metal halide perovskite materials[J]. Journal of Alloys, 861, 158207(2021).
[30] Tyznik C, Lee J et al. Interfaces, Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency[J]. ACS Applied Materials, 13, 10231-10238(2021).
[31] Wu G. -B,, Dai J Y, et al. A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves[J]. Nat. Commun, 14, 5155(2023).
[32] Chen M, Wang Y et al. Monolithic metamaterial-integrated graphene terahertz photodetector with wavelength and polarization selectivity[J]. ACS Nano, 16, 17263-17273(2022).
[33] Wilson J N, Frost J M et al. Dielectric and ferroic properties of metal halide perovskites[J]. APL Mater, 7, 010901(2019).
[34] Li Y, Zhang Y et al. Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors[J]. Nano Lett, 20, 5646-5654(2020).
[35] Hong M J, Zhu L et al. Time-resolved changes in dielectric constant of metal halide perovskites under illumination[J]. Am. Chem. Soc, 142, 19799-19803(2020).
[36] Awni R A, Song Z et al. Influence of charge transport layers on capacitance measured in halide perovskite solar cells[J]. Joule, 4, 644-657(2020).
[37] Chen M, Zhao Z et al. Novel Terahertz Spectrum-Measurement Method Based on Spectral Encoding[J]. Laser & Optoelectronics Progress.
[38] Cui T J, Qi M Q et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: science, 3, e218-e218(2014).
[39] Yan X, Liang L J et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies.[J]. Acta Phys. Sin.
[40] Monticone F, Estakhri N M et al. Full control of nanoscale optical transmission with a composite metascreen[J]. Phys. Rev. Lett, 110, 203903(2013).
Get Citation
Copy Citation Text
Yi-Fan LI, He YANG, Rui YANG, Yi-Ming JIA, Jia-Min HU, Cun-Guang LOU, Yu YU, Xiu-Ling LIU, Jian-Quan YAO. Research of terahertz frequency tunable coding metasurface based on perovskite materials[J]. Journal of Infrared and Millimeter Waves, 2025, 44(1): 52
Category: Millimeter Wave and Terahertz Technology
Received: May. 16, 2024
Accepted: --
Published Online: Mar. 5, 2025
The Author Email: Yi-Fan LI (yifanli@tju.edu.cn)