Journal of Inorganic Materials, Volume. 37, Issue 5, 481(2022)
[1] WENG Y, XU S, HUANG G et al. Synthesis. Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)(1-x)Mgx]O2 prepared from spent lithium ion batteries[J]. Jounral of Hazard Materials, 247, 163-172(2013).
[2] KIM T, SONG W, SON D Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 7, 2942-2964(2019).
[3] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 451, 652-657(2008).
[4] ZHANG H, ZHAO H, KHAN M A. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries[J]. Journal of Materials Chemistry A, 6, 20564-20620(2018).
[5] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 135, 1167-1176(2013).
[6] SUO L, L H. The past, present and future of lithium ion batteries[J]. Physics, 49, 17-23(2020).
[7] LI W, DAHN J R, WAINWRIGHT D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 264, 1115-1118(1994).
[8] ZHOU D. A New Anode Material of Na2V6O16 Nanowires for Aqueous Rechargeable Lithium Battery.[J]. Changsha: Central South University, Master Dissertation(2013).
[9] LI W, MCKINNON W R, R D J.. Lithium intercalation from aqueous solutions[J]. Journal of Electrochemical Society, 141, 2310-2316(1994).
[10] TANG W, ZHU Y, HOU Y. Aqueous rechargeable lithium batteries as an energy storage system of superfast charging[J]. Energy & Environmental Science, 6, 2093-2104(2013).
[11] DEMIR-CAKAN R, PALACIN M R, CROGUENNEC L. Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry[J]. Journal of Materials Chemistry A, 7, 20519-20539(2019).
[12] LUO J Y, CUI W J, HE P. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nature Chemistry, 2, 760-765(2010).
[13] LIU Z, HUANG Y, HUANG Y. Voltage issue of aqueous rechargeable metal-ion batteries[J]. Chemical Society Review, 49, 180-232(2020).
[14] LIU W, WANG B, LI L. Recent progress in electrode materials for aqueous lithium-ion batteries[J]. Energy Storage Science and Technology, 3, 9-20(2014).
[15] AATIQ A, MENETRIER M, CROGUENNEC L. On the structure of Li3Ti2(PO4)3[J]. Journal of Materials Chemistry, 12, 2971-2978(2002).
[16] GIAROLA M, SANSON A, TIETZ F. Structure and vibrational dynamics of nasicon-type LiTi2(PO4)3[J]. Journal of Physical Chemistry C, 121, 3697-3706(2017).
[17] EL-SHINAWI H, JANEK J. Low-temperature synthesis of macroporous LiTi2(PO4)3/C with superior lithium storage properties[J]. RSC Advances, 5, 14887-14891(2015).
[18] GUTIERREZ A, BENEDEK N A, MANTHIRAM A. Crystal- chemical guide for understanding redox energy variations of M 2+/ 3+ couples in polyanion cathodes for lithium-ion batteries[J]. Chemistry of Materials, 25, 4010-4016(2013).
[19] DELMAS C, NADIRI A, SOUBEYROUX L J. The nasicon-type titatium phosphates ATi2(PO4)3(A=Li, Na) as electrode materials[J]. Solid State Ionics, 28-30, 419-423(1988).
[20] WANG H, HUANG K, ZENG Y. Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anode material for lithium ion battery with aqueous solution electrolyte[J]. Electrochimica Acta, 52, 3280-3285(2007).
[21] JIANG Z, LI Y, HAN C. K doping on Li site enables LiTi2(PO4)3/C excellent lithium storage performance[J]. Solid State Ionics, 341, 115036(2019).
[22] YU S, TEMPEL H, SCHIERHOLZ R. LiTi2(PO4)3/C anode material with a spindle-like morphology for batteries with high rate capability and improved cycle life[J]. ChemElectroChem, 3, 1157-1169(2016).
[23] SUN J, SUN Y, GAI L. Carbon-coated mesoporous LiTi2(PO4)3 nanocrystals with superior performance for lithium-ion batteries[J]. Electrochimica Acta, 200, 66-74(2016).
[24] LIU L, SONG T, HAN H. Electrospun Sn-doped LiTi2(PO4)3/C nanofibers for ultra-fast charging and discharging[J]. Journal of Materials Chemistry A, 3, 10395-10402(2015).
[25] WANG G X, BRADHURST D H, DOU S X. LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials[J]. Journal of Power Sources, 124, 231-236(2003).
[26] LI W,R. D J. Lithium-ion cells with aqueous electrolytes[J]. Journal of Electrochemical Society, 142, 1742-1746(1995).
[27] KOHLER J, MAKIHARA H, UEGAITO H. LiV3O8: characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochim. Acta, 46, 59-65(2000).
[28] ZHENG W. Solid-state Synthesis and Surface Modification of LiFePO4 and LiTi2(PO4)3 for Lithium Ion Electrode Materials.[J]. Zhengjiang: Zhengjiang University,Doctoral Dissertation(2010).
[29] FENG C, LI L, TANG J. Synthesis and electrochemical performance of a new type of anode material LiTi2(PO4)3[J]. Power Technology, 39, 242-244(2015).
[30] LI W, LI Y, CAO M. Synthesis and electrochemical performance of alginic acid-based carbon-coated Li3V2(PO4)3 composite by rheological phase method[J]. Acta Phys-ChimSin, 33, 2261-2267(2017).
[31] LUO J Y, XIA Y Y. Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability[J]. Advanced Functional Materials, 17, 3877-3884(2007).
[32] TANG Z K, XUE Y F, TEOBALDI G. The oxygen vacancy in Li-ion battery cathode materials[J]. Nanoscale Horizons, 5, 1453-1466(2020).
[33] LUO J Y, CHEN L J, ZHAO Y J. The effect of oxygen vacancies on the structure and electrochemistry of LiTi2(PO4)3 for lithium-ion batteries: a combined experimental and theoretical study[J]. Journal of Power Sources, 194, 1075-1080(2009).
[34] CHENG C. Study of Anode Materials for Aqueous Rechargeable Lithium-ion Batteries.[J]. Changsha: Xiangtan University, Master Dissertation(2010).
[35] MARIAPPAN C R, GALVEN C, CROSNIER-LOPEZ M P. Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method[J]. Journal of Solid State Chemistry, 179, 450-456(2006).
[36] WESSELLS C, HUGGINS R A, CUI Y. Recent results on aqueous electrolyte cells[J]. Journal of Power Sources, 196, 2884-2888(2011).
[37] ZHOU X L, YAN Z G, LI S Y. Single crystalline LiTi2(PO4)3 nanowires by porous template with improved electrochemical performance[J]. Materials Today Energy, 7, 113-121(2018).
[38] ZHOU X. Lithium Titanium Phosphate and Carbon/copper Composite Electrode Materials: Controlled Preparation, Structural Study and Electrochemical Performance[J]. Beijing: Beijing University of Technology, Doctoral Dissertation(2014).
[39] ZHOU D, LI J, CHEN C. A hydrothermal synthesis of Ru-doped LiMn1.5Ni0.5O4 cathode materials for enhanced electrochemical performance[J]. RSC Advances, 11, 12549-12558(2021).
[40] SONG Y, XIE B, SONG S. Regeneration of LiFePO4 from spent lithium-ion batteries
[41] WANG J, QIN X, GUO J. A porous hierarchical micro/nano LiNi0.5Mn1.5O4 cathode material for Li-ion batteries synthesized by a urea-assisted hydrothermal method[J]. Dalton Transactions, 47, 7333-7343(2018).
[42] QIN X, ZHOU M, ZONG B. Urea-assisted hydrothermal synthesis of a hollow hierarchical LiNi0.5Mn1.5O4 cathode material with tunable morphology characteristics[J]. RSC Advances, 8, 30087-30097(2018).
[43] YUE Y, PANG W. Hydrothermal synthesis and characterization of LiTi2(PO4)3[J]. Journal of Materials Science Letters, 9, 1392(1990).
[44] LIANG Y, HISAMO T, SUMI S. Direct fabrication of thin-film LiTi2(PO4)3 electrodes using the hydrothermal method[J]. Solid State Ionics, 296, 7-12(2016).
[45] LI M, LIU L, ZHANG N. Mesoporous LiTi2(PO4)3/C composite with trace amount of carbon as high-performance electrode materials for lithium ion batteries[J]. Journal of Alloys and Compounds, 749, 1019-1027(2018).
[46] HOU P, ZHANG H, ZI Z. Core-shell and concentration- gradient cathodes prepared
[47] LI H, LI Z, CUI Y. Long-cycled Li2ZnTi3O8/TiO2 composite anode material synthesized
[50] OGHBAEI M, MIRZAEE O. Microwave
[51] RIQUET G, MARINEL S, BREARD Y. Direct and hybrid microwave solid state synthesis of CaCu3Ti4O12 ceramic: microstructures and dielectric properties[J]. Ceramics International, 44, 15228-15235(2018).
[52] ZHANG M, GARCIA-ARAEZ N, HECTOR A L. Understanding and development of olivine LiCoPO4 cathode materials for lithium- ion batteries[J]. Journal of Materials Chemistry A, 6, 14483-14517(2018).
[53] LUDWIG J, NORDLUND D, DOEFF M M. Synthesis and characterization of metastable, 20 nm-sized Pna21-LiCoPO4 nanospheres[J]. Journal of Solid State Chemistry, 248, 9-17(2017).
[54] GUO X, JIA X, HU H. Synthesis of LiTi2(PO4)3 ultrafine powder by Sol-Gel and microwave heating method[J]. Materials Reports, 21, 68-71(2007).
[55] HU J, HUANG W, YANG L. Structure and performance of the LiFePO4 cathode material: from the bulk to the surface[J]. Nanoscale, 12, 15036-15044(2020).
[56] YANG C, LEE D J, KIM H. Synthesis of nano-sized urchin-shaped LiFePO4 for lithium ion batteries[J]. RSC Advances, 9, 13714-13721(2019).
[57] XIANG J, ZHANG P, LV S. Spinel LiMn2O4 nanoparticles fabricated by the flexible soft template/Pichini method as cathode materials for aqueous lithium-ion capacitors with high energy and power density[J]. RSC Advances, 11, 14891-14898(2021).
[58] JO J, NAM S, HAN S. One-pot pyro synthesis of a nanosized-LiMn2O4/C cathode with enhanced lithium storage properties[J]. RSC Advances, 9, 24030-24038(2019).
[59] QI W, SHAPTER J G, WU Q. Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives[J]. Journal of Materials Chemistry A, 5, 19521-19540(2017).
[60] TIAN L, YU H, ZHANG W. The star material of lithium ion batteries, LiFePO4: basic properties, optimize moderation and future prospects[J]. Materials Reports, 33, 3561-3579(2019).
[61] DENG W, WANG X, LIU C. Touching the theoretical capacity: synthesizing cubic LiTi2(PO4)3/C nanocomposites for high-performance lithium-ion battery[J]. Nanoscale, 10, 6282-6287(2018).
[62] WU Y, CHONG S, LIU Y. High electrochemical performance of nanocrystallized carbon-coated LiFePO4 modified by tris (pentafluorophenyl) borane as a cathode material for lithium-ion batteries[J]. RSC Advances, 8, 28978-28986(2018).
[63] WANG Y, WANG X, JIANG A. A versatile nitrogen-doped carbon coating strategy to improve the electrochemical performance of LiFePO4 cathodes for lithium-ion batteries[J]. Journal of Alloys and Compounds, 810, 151889(2019).
[64] PARK G D, HONG J H, JUNG D S. Unique structured microspheres with multishells comprising graphitic carbon-coated Fe3O4 hollow nanopowders as anode materials for high-performance Li-ion batteries[J]. Journal of Materials Chemistry A, 7, 15766-15773(2019).
[65] KU D J, LEE J H, LEE S J. Effects of carbon coating on LiNi0.5Mn1.5O4 cathode material for lithium ion batteries using an atmospheric microwave plasma torch[J]. Surface and Coatings Technology, 376, 25-30(2019).
[66] SUN W, LIU J, LIU X. Bimolecular-induced hierarchical nanoporous LiTi2(PO4)3/C with superior high-rate and cycling performance[J]. Chemical Communications, 53, 8703-8706(2017).
[67] TAN Y, XUE B. Research progress on lithium titanate as anode material in lithium-ion battery[J]. Journal of Inorganic Materials, 33, 475-482(2018).
[68] LI H, ZHOU H. Enhancing the performances of Li-ion batteries by carbon-coating: present and future[J]. Chemical Communications, 48, 1201-1217(2012).
[69] YE J, LI C, RAO M. Effects of different carbon solutions on electrochemical performance of LiTi2(PO4)3/C composite anode material[J]. Power Technology, 44, 322-325(2020).
[70] LUO S, TIAN Y, TANG Z. Effect of the structure of pyrolytic carbon on the performance of LiFePO4/C composite cathode material[J]. Rare Metal Materials and Engineering, 38, 13-15(2009).
[71] CHEN Y, HE H, LIU L. Thermal decomposition of glucose and sucrose by kinetics analysis[J]. The Chinese Joumal of Process Engineering, 10, 720-725(2010).
[72] ZHANG C, WEN Y, ZHANG P. Effect of organic carbon source on performance of LiTi2(PO4)3/C composite electrodes in aqueous solutions[J]. Chemical Journal of Chinese Universities, 41, 1352-1361(2020).
[73] LIN L, CONG Z, CAO J. Multifunctional Fe3O4@Polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy[J]. ACS Nano, 8, 3876-3883(2014).
[74] HE Z, JIANG Y, MENG W. Advanced LiTi2(PO4)3@N-doped carbon anode for aqueous lithium ion batteries[J]. Electrochimica Acta, 222, 1491-1500(2016).
[75] SUN D, TANG Y, HE K. Long-lived aqueous rechargeable lithium batteries using mesoporous LiTi2( PO4)3@Canode[J]. Scientific Reports, 5, 17452(2015).
[76] XU T, ZHAO M, SU Z. Nanostructured LiTi2(PO4)3 anode with superior lithium and sodium storage capability aqueous electrolytes[J]. Journal of Power Sources, 481, 229110(2021).
[77] ROH H K, KIM H K, ROH K C. LiTi2(PO4)3/reduced graphene oxide nanocomposite with enhanced electrochemical performance for lithium-ion batteries[J]. RSC Advances, 4, 31672-31677(2014).
[78] LIM C H, KANNAN A G, LEE H W. A high power density electrode with ultralow carbon
[79] WANG H, YANG Y, LIANG Y. LiMn1-
[80] ZHOU Z, LUO W, HUANG H. LiTi2(PO4)3@carbon/ graphene hybrid as superior anode materials for aqueous lithium ion batteries[J]. Ceramics International, 43, 99-105(2017).
[81] ZHOU M, LIU L, YI L. Synthesis of LiTi2(PO4)3-acetylene black nanocomposites for lithium ion batteries by the polyvinyl alcohol assisted Sol-Gel method and ball-milling[J]. Journal of Power Sources, 234, 292-301(2013).
[82] LIU L, ZHOU M, WANG G. Synthesis and characterization of LiTi2(PO4)3/C nanocomposite as lithium intercalation electrode materials[J]. Electrochimica Acta, 70, 136-141(2012).
[83] WENG G M, SIMON TAM L Y, LU Y C. High-performance LiTi2(PO4)3 anodes for high-areal-capacity flexible aqueous lithium-ion batteries[J]. Journal of Materials Chemistry A, 5, 11764-11771(2017).
[84] HE Z, JIANG Y, ZHU J. N-doped carbon coated LiTi2(PO4)3 as superior anode using PANi as carbon and nitrogen bi-sources for aqueous lithium ion battery[J]. Electrochimica Acta, 279, 279-288(2018).
[85] ZHOU Z, XIANG A, XIA M. Advanced LiTi2(PO4)3 anode with high performance for aqueous rechargeable lithium battery[J]. Ceramics International, 44, 21599-21606(2018).
[86] YE J M, LI C M. Synthesis of LiTi2(PO4)3@carbon anode material with superior performance using beta-cyclodextrin as carbon sources[J]. Ionics, 26, 2845-2853(2020).
[87] BOUNAR N, BENABBAS A, ROPA P. Synthesis and ionic conductivity of nasicon-structured LiTi2
[88] HE Z, JIANG Y, ZHU J. Boosting the performance of LiTi2(PO4)3/C anode for aqueous lithium ion battery by Sn doping on Ti sites[J]. Journal of Alloys and Compounds, 731, 32-38(2018).
[89] LIU N, HE Z, ZHANG X. Synthesis and electrochemical properties of Na-doped LiTi2(PO4)3@carbon composite as anode for aqueous lithium ion batteries[J]. Ceramics International, 43, 11481-11487(2017).
[90] WANG H, ZHANG H, CHENG Y. Rational design and synthesis of LiTi2(PO4)3-
[92] LUO H, TANG Y, XIANG Z. Cl-doping strategy to boost the lithium storage performance of lithium titanium phosphate[J]. Frontiers in Chemistry, 8, 349(2020).
[93] JIANG Z, LI Y H, HAN C. Endowing LiTi2(PO4)3/C with excellent electrochemical performances through rational crystal doping[J]. Ceramics International, 45, 23406-23410(2019).
Get Citation
Copy Citation Text
Yutong WANG, Feifan ZHANG, Naicai XU, Chunxia WANG, Lishan CUI, Guoyong HUANG.
Category: REVIEW
Received: Aug. 13, 2021
Accepted: --
Published Online: Jan. 10, 2023
The Author Email: Guoyong HUANG (huanggy@cup.edu.cn)