Journal of Inorganic Materials, Volume. 36, Issue 1, 95(2021)
[1] KANEKO K, KATO T, KITAYAMA M et al. Precipitation of MgO.
[2] BONEVICH J E, MARKS L D. Electron radiation damage of
[3] TOMOKIYO Y, MANABE T, KINOSHITA C. Structural change induced near surfaces of
[4] TOMOKIYO Y, KUROIWA T, KINOSHITA C. Defects occurring at or near surfaces in
[5] CHEN C L, ARAKAWA K, LEE J G et al. Electron-irradiation- induced phase transformation in alumina[D]. Scripta Materialia, 63, 1013-1016(2010).
[6] OH S H, KAUFFMANN Y, SCHEU C et al. Ordered liquid aluminum at the interface with sapphire[D]. Science, 310, 661-663(2005).
[7] PELLS AERE G P, SHIKAMA T. Radiation damage in pure and helium-doped
[8] CHEN C L, FURUSHO H, MORI H.
[9] CHEN C L, FURUSHO H, MORI H. Effects of temperature and electron energy on the electron-irradiation-induced decomposition of sapphire[D]. Philosophical Magazine Letters, 90, 715-721(2010).
[10] BOUCHET D, COLLIEX C. Experimental study of ELNES at grain boundaries in alumina: intergranular radiation damage effects on Al-L23 and OK edges[D]. Ultramicroscopy, 96, 139-152(2003).
[11] BERGER S D, SALISBURY I G, MILNE R H et al. Electron energy-loss spectroscopy studies of nanometre-scale structures in alumina produced by intense electron-beam irradiation[D]. Philosophical Magazine B, 55, 341-358(1987).
[12] WANG D, SHEN L, RAN S et al. Transparent alumina fabricated by SPS sintering with AlF3 doping[D]. Scripta Materialia, 92, 31-34(2014).
[13] CHEN G S, BOOTHROYD C B, HUMPHREYS C J. Electron- beam induced crystallization transition in self-developing amorphous AlF3 resists[D]. Applied Physics Letters, 69, 170-172(1996).
[14] MA C, BERTA Y, WANG Z L. Patterned aluminum nanowires produced by electron beam at the surfaces of AlF3 single crystals[D]. Solid State Communications, 129, 681-685(2004).
[15] GHATAK J, GNANAVEL T, GUAN W et al. Electron Beam Synthesis of 3D Metal Nanostructures from Fluoride Precursors[C]. MRS Online Proceedings Library Archive, 1411(2012).
[16] WANG J, GAO L. Photoluminescence properties of nanocrystalline ZnO ceramics prepared by pressureless sintering and spark plasma sintering[D]. Journal of the American Ceramic Society, 88, 1637-1639(2005).
[17] JIANG D T, MUKHERJEE A K. The influence of oxygen vacancy on the optical transmission of an yttria-magnesia nanocomposite[D]. Scripta Materialia, 64, 1095-1097(2011).
[18] MEIR S, KALABUKHOV S, FROUMIN N et al. Synthesis and densification of transparent magnesium aluminate spinel by SPS processing[D]. Journal of the American Ceramic Society, 92, 358-364(2009).
[19] REIMANIS I, KLEEBE H J. A review on the sintering and microstructure development of transparent spinel (MgAl2O4)[D]. Journal of the American Ceramic Society, 92, 1472-1480(2009).
[20] WILLIAMS D B, CARTER C B[M]. Transmission Electron Microscopy: a Textbook for Materials Science, 2nd edition, 271-282(2009).
[21] HEUER A H, LAGERLOF K P D, CASTAING J. Slip and twinning dislocations in sapphire (
[22] CASTILLO-RODRIGUEZ M, MUNOZ A, CASTAING J et al. Basal slip latent hardening by prism plane slip dislocations in sapphire(
[23] MARDER R, CHAIM R, CHEVALLIER G et al. Effect of 1wt% LiF additive on the densification of nanocrystalline Y2O3 ceramics by spark plasma sintering[D]. Journal of the European Ceramic Society, 31, 1057-1066(2011).
Get Citation
Copy Citation Text
Lu SHEN, Dewen WANG, Rong HUANG, Shiyu DU, Qing HUANG.
Category: RESEARCH LETTERS
Received: Nov. 4, 2020
Accepted: --
Published Online: Jan. 21, 2021
The Author Email: Qing HUANG (huangqing@nimte.ac.cn)