Infrared and Laser Engineering, Volume. 51, Issue 5, 20220270(2022)
Advances in III-nitride-based microresonator optical frequency combs (Invited)
[1] Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics[J]. Nature, 557, 81-85(2018).
[2] Suh M-G, Vahala K J. Soliton microcomb range measurement[J]. Science, 359, 884-887(2018).
[3] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 359, 887-891(2018).
[4] Suh M-G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy[J]. Science, 354, 600-603(2016).
[5] Dutt A, Joshi C, Ji X, et al. On-chip dual-comb source for spectroscopy[J]. Science Advances, 4, e1701858(2018).
[6] Liu J, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs[J]. Nature Photonics, 14, 486-491(2020).
[7] Brasch V, Lucas E, Jost J D, et al. Self-referenced photonic chip soliton Kerr frequency comb[J]. Light: Science & Applications, 6, e16202(2017).
[8] Obrzud E, Rainer M, Harutyunyan A, et al. A microphotonic astrocomb[J]. Nature Photonics, 13, 31-35(2019).
[9] Suh M-G, Yi X, Lai Y H, et al. Searching for exoplanets using a microresonator astrocomb[J]. Nature Photonics, 13, 25-30(2019).
[10] Moille G, Chang L, Xie W, et al. Dissipative Kerr solitons in a III-V microresonator[J]. Laser & Photonics Reviews, 14, 2000022(2020).
[11] Chang L, Xie W, Shu H, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Communications, 11, 1331(2020).
[12] Ji X, Barbosa F A S, Roberts S P, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold[J]. Optica, 4, 619(2017).
[13] Gong Z, Bruch A, Shen M, et al. High-fidelity cavity soliton generation in crystalline AlN microring resonators[J]. Optics Letters, 43, 4366(2018).
[14] Liu X, Sun C, Xiong B, et al. Integrated high-
[15] Hausmann B J M, Bulu I, Lončar M, et al. Diamond nonlinear photonics[J]. Nature Photonics, 8, 369(2014).
[16] He Y, Yang Q-F, Ling J, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 6, 1138(2019).
[17] Zheng Y, Sun C, Xiong B, et al. Integrated gallium nitride nonlinear photonics[J]. Laser & Photonics Reviews, 16, 2100071(2022).
[18] Jung H, Xiong C, Fong K Y, et al. Optical frequency comb generation from aluminum nitride microring resonator[J]. Optics Letters, 38, 2810-2813(2013).
[19] Jung H, Stoll R, Guo X, et al. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator[J]. Optica, 1, 396(2014).
[20] Liu X, Sun C, Xiong B, et al. Integrated continuous-wave aluminum nitride Raman laser[J]. Optica, 4, 893(2017).
[21] Liu X, Sun C, Xiong B, et al. Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities[J]. Applied Physics Letters, 113, 171106(2018).
[22] Liu X, Gong Z, Bruch A W, et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing[J]. Nature Communications, 12, 5428(2021).
[23] Weng H, Liu J, Afridi A A, et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator[J]. Photonics Research, 9, 1351(2021).
[24] Tang C L, Bosenberg W R, Ukachi T, et al. Optical parametric oscillators[J]. Proceedings of the IEEE, 80, 365-374(1992).
[25] Godard A. Infrared (2–12 μm) solid-state laser sources: A review[J]. Comptes Rendus Physique, 8, 1100-1128(2007).
[26] Breunig I, Haertle D, Buse K. Continuous-wave optical parametric oscillators: recent developments and prospects[J]. Applied Physics B, 105, 99(2011).
[27] Bruch A W, Liu X, Surya J B, et al. On-chip χ (2) microring optical parametric oscillator[J]. Optica, 6, 1361(2019).
[28] Bruch A W, Liu X, Gong Z, et al. Pockels soliton microcomb[J]. Nature Photonics, 15, 21-27(2021).
[29] Bruch A W, Liu X, Guo X, et al. 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators[J]. Applied Physics Letters, 113, 131102(2018).
[30] Bruch A W, Xiong C, Leung B, et al. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films[J]. Applied Physics Letters, 107, 141113(2015).
[31] Stassen E, Pu M, Semenova E, et al. High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics[J]. Optics Letters, 44, 1064(2019).
Get Citation
Copy Citation Text
Changzheng Sun, Yanzhen Zheng, Bing Xiong, Lai Wang, Zhibiao Hao, Jian Wang, Yanjun Han, Hongtao Li, Yi Luo. Advances in III-nitride-based microresonator optical frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220270
Category: Special issue—Microcavity optical frequency comb technology
Received: Mar. 10, 2022
Accepted: May. 16, 2022
Published Online: Jun. 14, 2022
The Author Email: