Optics and Precision Engineering, Volume. 31, Issue 21, 3145(2023)
Intra-inter channel attention for few-shot classification
[1] JIANG K, ZHU L, SUN Q D. Joint dual-structural constrained and non-negative analysis representation learning for pattern classification[J]. Applied Artificial Intelligence, 37, 2180821(2023).
[2] AGARWAL N, SONDHI A, CHOPRA K et al.
[3] LI X, SUN Z, XUE J H et al. A concise review of recent few-shot meta-learning methods[J]. Neurocomputing, 456, 463-468(2021).
[6] HOSPEDALES T, ANTONIOU A, MICAELLI P et al. Meta-learning in neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 5149-5169(2022).
[7] HUISMAN M, RIJN J N, PLAAT A. A survey of deep meta-learning[J]. Artificial Intelligence Review, 54, 4483-4541(2021).
[8] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C], 4080-4090(2017).
[9] YAN S P, ZHANG S Y, HE X M. A dual attention network with semantic embedding for few-shot learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 9079-9086(2019).
[10] LEE S, MOON W, HEO J P. Task discrepancy maximization for fine-grained few-shot classification[C], 5321-5330(2022).
[11] GIDARIS S, BURSUC A, KOMODAKIS N et al. Boosting few-shot visual learning with self-supervision[C], 8058-8067(2019).
[12] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[13] GUO M H, XU T X, LIU J J et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 8, 331-368(2022).
[14] VINYALS O, BLUNDELL C, LILLICRAP T et al. Matching networks for one shot learning[C], 3637-3645(2016).
[15] RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C](2017).
[16] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C], 1126-1135(11).
[17] LIU X, ZHOU F, LIU J et al. Meta-Learning based prototype-relation network for few-shot classification[J]. Neurocomputing, 383, 224-234(2020).
[19] ZHOU F, ZHANG L, WEI W. Meta-generating deep attentive metric for few-shot classification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 32, 6863-6873(2022).
[20] AN Y X, XUE H, ZHAO X Y et al. Conditional self-supervised learning for few-shot classification[C], 19, 2140-2146(2021).
[21] BERTINETTO L, HENRIQUES J F, TORR P H S et al. Meta-learning with differentiable closed-form solvers[C](2019).
[24] SENDERA M, PRZEWIĘŹLIKOWSKI M, KARANOWSKI K et al. HyperShot: few-shot learning by kernel HyperNetworks[C], 2468-2477(2023).
[25] ALLEN K, SHELHAMER E, SHIN H et al. Infinite mixture prototypes for few-shot learning[C], 232-241(2019).
Get Citation
Copy Citation Text
Liping YANG, Tianyang ZHANG, Yuyang WANG, Xiaohua GU. Intra-inter channel attention for few-shot classification[J]. Optics and Precision Engineering, 2023, 31(21): 3145
Category:
Received: Apr. 6, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: Liping YANG (yanglp@cqu.edu.cn)