Laser & Optoelectronics Progress, Volume. 57, Issue 2, 21014(2020)

Medical-Image Super-Resolution Reconstruction Method Based on Residual Channel Attention Network

Liu Kewen1,2, Ma Yuan1,2, Xiong Hongxia3、*, Yan Zejun4, Zhou Zhijun5, Liu Chaoyang6, Fang Panpan1,2, Li Xiaojun1,2, and Chen Yalei1,2
Author Affiliations
  • 1School of Information Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 2Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 3School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 4Department of Urology, Ningbo First Hospital, Key Laboratory of Translational Medicine of Urological Diseases in Ningbo, Ningbo, Zhejiang 315010, China
  • 5Department of Urology, the First People''s Hospital of Tianmen, Tianmen, Hubei 431700, China
  • 6State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • show less
    Cited By

    Article index updated: Sep. 11, 2025

    The article is cited by 8 article(s) CLP online library. (Some content might be in Chinese.)
    Tools

    Get Citation

    Copy Citation Text

    Liu Kewen, Ma Yuan, Xiong Hongxia, Yan Zejun, Zhou Zhijun, Liu Chaoyang, Fang Panpan, Li Xiaojun, Chen Yalei. Medical-Image Super-Resolution Reconstruction Method Based on Residual Channel Attention Network[J]. Laser & Optoelectronics Progress, 2020, 57(2): 21014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 4, 2019

    Accepted: --

    Published Online: Jan. 3, 2020

    The Author Email: Xiong Hongxia (xionghongxia@whut.edu.cn)

    DOI:10.3788/LOP57.021014

    Topics