Laser Technology, Volume. 48, Issue 6, 771(2024)

Narrow linewidth semiconductor laser based on polarization maintaining Bragg grating

CHEN Jiaqi1,2, CHEN Chao1、*, SUN Jingjing1,2, ZHANG Jianwei1, LIU Zhaohui1,2, ZHAO Jiaxin3, DU Mingyuan3, LI Xiangshang4, QIN Li1, NING Yongqiang1, and WANG Lijun1
Author Affiliations
  • 1State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 4College of Physics, Changchun University of Science and Technology, Changchun 130013, China
  • show less
    References(22)

    [2] [2] SHI H, CHANG P, WANG Z, et al. Frequency stabilization of a Cesium Faraday laser with a double-layer vapor cell as frequency reference[J]. IEEE Photonics Journal, 2022, 14(6): 1561006.

    [3] [3] CHOU C W, HUME D B, ROSENBAND T, et al. Optical clocks and relativity[J]. Science, 2010, 329(5999): 1630-1633.

    [4] [4] LUVSANDAMDIN E, SPIEBERGER S, SCHIEMANGK M, et al. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space[J]. Applied Physics, 2013, B111(2): 255-260.

    [5] [5] LUDLOW A D, ZCLCVINSKY T, CAMPBELL G K, et al. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808.

    [6] [6] HUMMON M T, KANG S, BOPP D G, et al. Photonic chip for laser stabilization to an atomic vapor with 10-11 instability[J]. Optica, 2018, 5(4): 443-449.

    [9] [9] FABIAN M, NICOLE K, BENNO W. Stabilized laser system at 1550 nm wavelength for future gravitational-wave detectors[J]. Physical Review, 2022, D105(12): 122004.

    [10] [10] KRAKOWSKIA M, MEGHNAGIA M, AFUSO-ROXOA P, et al. Modulated DFB-ridge laser diodes at 894 nm for compact Cesium CPT atomic clocks[J]. Proceedings of the SPIE, 2023, 12440: 1244004.

    [11] [11] JIMENEZ A, MILDE T, STAACKE N, et al. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range[J]. Applied Physics, 2017, B123(7): 1-14.

    [12] [12] YIM S, KIM T, CHOI J. A simple extended-cavity diode laser using a precision mirror mount[J]. Review of Scientific Instruments, 2020, 91(4): 046102.

    [15] [15] ZHANG L, WEI F, SUN G W, et al. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG[J]. IEEE Photonics Technology Letters, 2017, 29(4): 385-388.

    [16] [16] PAUL A. MORTON, MICHAEL J M. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing[J]. Journal of Lightwave Technology, 2018, 36(21): 5048-5057.

    [17] [17] HISHAM H K, ABAS A F, MAHDIRAJI G A, et al. Improving the characteristics of the modulation response for fiber Bragg grating Fabry-Perot lasers by optimizing model parameters[J]. Optics and Laser Technology, 2012, 44(6): 1698-1705.

    [18] [18] HAO L, WANG X, JIA K, et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics[J]. Optics Letters, 2021, 46(15): 3769-3772.

    [19] [19] LUO X C, CHEN C, NING Y Q, et al. Single polarization, narrow linewidth hybrid laser based on selective polarization mode feedback[J]. Optics and Laser Technology, 2022, 154: 108340.

    [20] [20] HENRY C H. Theory of the linewidth of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1982, 18(2): 259-264.

    [21] [21] MALINAUSKAS M, UKAUSKAS A, HADEGAWA S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Sciences and Applications, 2016, 5(8): e16133.

    [23] [23] VERMERSCH F J, LIGERET V, BANSROPUN S, et al. High-power narrow linewidth distributed feedback lasers with an Aluminium-free active region emitting at 852 nm[J]. IEEE Photonics Technology Letters, 2008, 20(13): 1145-1147.

    [24] [24] LUO X C, CHEN C, NING Y Q, et al. High linear polarization, narrow linewidth hybrid semiconductor laser with an external birefringence waveguide Bragg grating[J]. Optics Express, 2021, 29(21): 33109-33120.

    [25] [25] WANG Y, TAI H, DUAN R, et al. Super-gain nanostructure with self-assembled well-wire complex energy-band engineering for high performance of tunable laser diodes[J]. Nanophotonics, 2023, 12(9): 1763-1776.

    [26] [26] WANG Z, KE C, ZHONG Y, et al. Ultra-narrow-linewidth measurement utilizing dual parameter acquisition through a partially coherent light interference[J]. Optics Express, 2020, 28(6): 8484-8493.

    [27] [27] CANAGASABEY A, MICHIE A, CANNING J, et al. A comparison of Michelson and Mach-Zehnder interferometers for laser linewidth measurements[C]//2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim. New York, USA: IEEE Press, 2011: 1392-1394.

    [28] [28] CHEN M, MENG Z, WANG J F, et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 2015, 23(5): 6803-6808.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Jiaqi, CHEN Chao, SUN Jingjing, ZHANG Jianwei, LIU Zhaohui, ZHAO Jiaxin, DU Mingyuan, LI Xiangshang, QIN Li, NING Yongqiang, WANG Lijun. Narrow linewidth semiconductor laser based on polarization maintaining Bragg grating[J]. Laser Technology, 2024, 48(6): 771

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 29, 2023

    Accepted: Feb. 13, 2025

    Published Online: Feb. 13, 2025

    The Author Email: CHEN Chao (chenc@ciomp.ac.cn)

    DOI:10.7510/jgjs.issn.1001-3806.2024.06.001

    Topics