Opto-Electronic Engineering, Volume. 47, Issue 10, 200203(2020)
Overview of advanced manufacturing technology of large-aperture aspheric mirror
[3] [3] NASA. Webb Space Telescope[EB/OL] https://www.jwst.nasa. gov/ content/about/index.html.
[4] [4] Stahl H P. Optics needs for future space telescopes[J]. Proceeding of SPIE, 2003, 5180: 1–5.
[6] [6] MDAA. Defense Support Program[EB/OL] https://missiledefenseadvocacy.org/defense-systems/defense-support-program/
[8] [8] TMT International Observatory. TMT Complex[EB/OL] https://www.tmt.org/image/50.
[15] [15] ASML. https://www.asml.com/en.
[19] [19] Rupp V. The development of optical surfaces during the grinding process[J]. Applied Optics, 1965, 4(6): 734–748.
[21] [21] Gallagher B. JWST mirror manufacturing status[R]. Talk for NASA Technology Days, 2006.
[23] [23] Lubliner J, Nelson J E. Stressed mirror polishing. 1: a technique for producing nonaxisymmetric mirrors[J]. Applied Optics, 1980, 19(14): 2332–2340.
[25] [25] Geyl R, Cayrel M. REOSC contribution to VLT and Gemini[J]. Proceedings of SPIE, 1999, 3739: 40–46.
[26] [26] Martin H M, Anderson D S, Angel J R P, et al. Progress in the stressed-lap polishing of a 1.8-m f/1 mirror[J]. Proceedings of SPIE, 1990, 1236: 682–690.
[27] [27] Smith B K, Burge J H, Martin H M. Fabrication of large secondary mirrors for astronomical telescopes[J]. Proceedings of SPIE, 1997, 3134: 51–61.
[31] [31] Walker D D, Beaucamp A T H, Brooks D, et al. Novel CNC polishing process for control of form and texture on aspheric surfaces[J]. Proceedings of SPIE, 2002, 4767: 99–105.
[33] [33] Yu G Y, Walker D, Li H Y. Implementing a grolishing process in Zeeko IRP machines[J]. Applied Optics, 2012, 51(27): 6637–6640.
[34] [34] Harris D C. History of magnetorheological finishing[J]. Proceedings of SPIE, 2011, 8016: 80160N.
[36] [36] F?hnle O W, Van Brug H, Frankena H J. Fluid jet polishing of optical surfaces[J]. Applied Optics, 1998, 37(28): 6771–6773.
[37] [37] Allen L N. Progress in ion figuring large optics[J]. Proceedings of SPIE, 1994, 2428: 237–247.
[40] [40] Malacara D. Optical Shop Testing[M]. 3rd ed. Hoboken, N J: Wiley, 2007.
[41] [41] www.taylor-hobson.com.cn/products/non-contact-3d-optical-profilers/luphos/luphoscan.
[42] [42] https://www.tno.nl/en/focus-areas/industry/roadmaps/semiconductor-equipment/photonics/nanomefos/.
[43] [43] Anderson D S, Burge J H. Swing-arm profilometry of aspherics[J]. Proceedings of SPIE, 1995, 2536: 169–179.
[45] [45] Su P, Oh C J, Parks R E, et al. Swing arm optical CMM for aspherics[J]. Proceedings of SPIE, 2009, 7426: 74260J.
[47] [47] Burge J H, Su P, Zhao C Y, et al. Use of a commercial laser tracker for optical alignment[J]. Proceedings of SPIE, 2007, 6676: 66760E.
[48] [48] Foucault L M. Description des procedes employes pour reconnaitre la configuration des surfaces optiques[J]. Comptes Rendus de l'Academie des Sciences, 1858, 47: 958–959.
[51] [51] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): 573–577.
[53] [53] Yang H S, Lee Y W, Lee J H, et al. Implementation of Hartmann test for measuring 0.9-m aspheric mirror[J]. Proceedings of SPIE, 2005, 5638: 154–163.
[54] [54] Yang H S, Lee Y W, Song J B. Null Hartmann test for the fabrication of large aspheric surfaces[J]. Optics Express, 2005, 13(6): 1839–1847.
[59] [59] Su P, Wang S S, Khreishi M, et al. SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments[J]. Proceedings of SPIE, 2012, 8450: 84500W.
[60] [60] https://www.mahr.de/
[61] [61] www.4dtechnology.com/
[62] [62] Kim C J, Wyant J C. Subaperture test of a large flat or a fast aspheric surface[J]. Journal of the Optical Society of America, 1981, 71: 1587.
[63] [63] Murphy P, Fleig J, Forbes G. Subaperture stitching interferometry for testing mild aspheres[J]. Proceedings of SPIE, 2006, 6293: 62930J.
[65] [65] Garbusi E, Pruss C, Osten W. Interferometer for precise and flexible asphere testing[J]. Optics Letters, 2008, 33(24): 2973–2975.
[66] [66] Garbusi E, Osten W. Perturbation methods in Optics: application to the interferometric measurement of surfaces[J]. Journal of the Optical Society of America A, 2009, 26(12): 2538–2549.
[67] [67] https://www.mahr.de/
[69] [69] Wu Y Q, Zhang Y D, Wu F, et al. Far-infrared Fizeau interferometer for large aspheric mirror[J]. Proceedings of SPIE, 2008, 7064: 70640S.
[70] [70] Wu Y Q, Zhang Y Z, Wu F. Design of far-infrared interferometer at 10.6μm[C]//Proceedings of 2009 Symposium on Photonics and Optoelectronics, 2009: 1–4.
[71] [71] Huang L B, Lu X X, Zhou Y F, et al. Dual-wavelength interferometry based on the spatial carrier-frequency phase-shifting method[J]. Applied Optics, 2016, 55(9): 2363–2369.
[72] [72] Wu T, Valera J D, Moore A J. High-speed, sub-Nyquist interferometry[J]. Optics Express, 2011, 19(11): 10111–10123.
[73] [73] Szwaykowski P, Olszak A. Nulling Fizeau Interferometer for Aspheric Surface Measurements[C]//Proceedings of Optical Fabrication and Testing 2010, 2010.
[75] [75] Dall H E. A null test for paraboloids[J]. J Br Astron Assoc, 1947, 57: 201.
[76] [76] Offner A. A null corrector for paraboloidal mirrors[J]. Applied Optics, 1963, 2(2): 153–155.
[77] [77] Zhang Y D, Wu Y Q, Fan B. Theoretical and experimental study of a catadioptric compensator for an aspheric surface[J]. Applied Optics, 2013, 52(27): 6834–6839.
[78] [78] Wyant J C, Bennett V B. Using computer generated holograms to test aspheric wavefronts[J]. Applied Optics, 1972, 11(5): 2833–2839.
[79] [79] Xue S, Chen S Y, Fan Z B, et al. Adaptive wavefront interferometry for unknown free-form surfaces[J]. Optics Express, 2018, 26(17): 21910–21928.
[80] [80] Zhang L, Li C, Huang X L, et al. Compact adaptive interferometer for unknown freeform surfaces with large departure[J]. Optics Express, 2020, 82(2): 1897–1913.
Get Citation
Copy Citation Text
Liu Fengwei, Wu Yongqian, Chen Qiang, Liu Haitao, Yan Fengtao, Zhang Shiyang, Wan Yongjian, Wu Fan. Overview of advanced manufacturing technology of large-aperture aspheric mirror[J]. Opto-Electronic Engineering, 2020, 47(10): 200203
Category:
Received: Jun. 3, 2020
Accepted: --
Published Online: Jan. 12, 2021
The Author Email: Yongqian Wu (wyq95111@sina.com;伍凡|wufan@ioe.ac.cn)