Acta Optica Sinica, Volume. 38, Issue 12, 1228002(2018)

Removal of Hyperspectral Stripe Noise Using Low-Pass Filtered Residual Images

Huihui Ju*, Zhigang Liu*, Jiangjun Jiang, and Yang Wang
Author Affiliations
  • Institute of Nuclear Engineering, Rocket Force Engineering University, Xi'an, Shaanxi 710025, China
  • show less
    Figures & Tables(11)
    Experimental results after 1000 Gaussian filtering. (a) Original strip noise image Y; (b) filtered image X; (c) residual image R
    Separation results of strip noise and detail. (a) Residual image R; (b) details D; (c) strip noise S
    Lenna images with strip noise of different degrees. (a) 0.01; (b) 0.02; (c) 0.05; (d) 0.1; (e) 0.2; (f) 0.5
    Test images. (a) Test image-1; (b) test image-2
    Stripe noise removing results of different algorithms on test image-1. (a) WFAF; (b) MDBC; (c) IDP; (d) RSLFRI
    Stripe noise removing results of different algorithms on test image-2. (a) WFAF; (b) MDBC; (c) IDP; (d) RSLFRI
    Comparison of mean column profiles before and after de-noising of test image-1
    Comparison of mean column profiles before and after de-noising of test image-2
    • Table 1. Steps of RSLFRI algorithm

      View table

      Table 1. Steps of RSLFRI algorithm

      Input: Y, K
      Output: X
      1. Initialization: X=Y, β=E1, ε=0.0001
      2. While β
      3. R=X-K*X
      4. β=RTE1/m
      5. F=X-E1βT
      6. X=F-μFEm×nYEm×n
      7. End
    • Table 2. Influences of filter standard deviation σ on the performance of RSLFRI algorithm

      View table

      Table 2. Influences of filter standard deviation σ on the performance of RSLFRI algorithm

      ImageParameterσ
      0.250.270.30.320.330.350.40.5110
      Lenna-1IRS8×10-78×10-60.56390.69302.33334.591314.391326.339241.798444.7957
      IIM0.00030.00030.00020.00020.00060.00140.00500.00940.01510.0162
      Lenna-2IRS7×10-70.03870.62140.96771.20071.84254.36737.346610.939611.6647
      IIM0.00140.00100.00050.00060.00080.00160.00510.00930.01440.0154
      Lenna-3IRS0.02450.36200.72040.89090.96081.08431.57942.17632.95383.0911
      IIM0.00650.00270.00150.00130.00140.00180.00480.00940.01570.0168
      Lenna-4IRS0.22350.48110.70240.82610.86460.95511.15401.31701.51991.5562
      IIM0.01620.01010.00570.00370.00330.00300.00570.01010.01620.0173
      Lenna-5IRS0.46400.67040.81680.86790.88300.92320.98351.06901.14101.1522
      IIM0.03730.02420.01570.01310.01230.01100.01160.01860.02820.0300
      Lenna-6IRS0.62270.78430.87800.90960.92190.94270.99041.04111.09741.1099
      IIM0.13940.09320.06930.06380.06230.06160.07510.10860.14540.1521
    • Table 3. Comparison of ability to maintain information for different algorithms

      View table

      Table 3. Comparison of ability to maintain information for different algorithms

      ImageParameterInitial imageWFAFMDBCIDPRSLFRI
      Test image-1μ0.45120.45120.45120.45120.4512
      δ0.01330.01110.01010.00980.0112
      fPSNR20.951422.072121.891722.023422.1907
      H6.88576.71796.62646.61596.7231
      C¯1.00000.98270.97060.97770.9831
      D¯00.00500.00540.00600.0048
      Test image-2μ0.21760.21760.21760.21760.2176
      δ0.00900.00900.00830.00810.0090
      fPSNR19.546819.548219.260119.388519.5560
      H5.97485.95776.15465.84465.9477
      C¯1.00000.99560.99060.97720.9970
      D¯00.00020.00080.00060.0001
    Tools

    Get Citation

    Copy Citation Text

    Huihui Ju, Zhigang Liu, Jiangjun Jiang, Yang Wang. Removal of Hyperspectral Stripe Noise Using Low-Pass Filtered Residual Images[J]. Acta Optica Sinica, 2018, 38(12): 1228002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Apr. 12, 2018

    Accepted: Jul. 26, 2018

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.3788/AOS201838.1228002

    Topics