The Journal of Light Scattering, Volume. 37, Issue 1, 30(2025)
Phonon anharmonic effects in semiconductor material CuAlO2
[1] [1] Han M, Lu Y, Liu Y, et al. Raman scattering measurements of phonon anharmonicity in the delafossite CuGa1-xCrxO2(0<x<1) films[J]. Journal of Raman Spectroscopy, 2020, 51(5): 851-859.
[2] [2] Pellicer-Porres J, Martinez-Garcia D, Segura A, et al. Pressure and temperature dependence of the lattice dynamics of CuAlO2 investigated by Raman scattering experiments and ab initio calculations[J]. Physical Review B-Condensed Matter and Materials Physics, 2006, 74(18): 184301.
[3] [3] Rodriguez-Hernndez P, Munoz A, Pellicer-PorresJ, et al. Lattice dynamics of CuAlO2 under highpressure from ab initio calculations[J]. physica status solidi(b), 2007, 244(1): 342-346.
[4] [4] Garg A B, Mishra A K, Pandey K K, et al. Multiferroic CuCrO2 under high pressure: In situ X-raydiffraction and Raman spectroscopic studies[J]. Journal of Applied Physics, 2014, 116(13): 133514.
[5] [5] Singh M K, Dussan S, Sharma G L, et al. Raman scattering measurements of phonon anharmonicity in CuAlO2 thin films[J]. Journal of Applied Physics, 2008, 104(11): 113503.
[6] [6] Kawazoe H, Yasukawa M, Hyodo H, et al. P-typeelectrical conduction in transparent thin films of CuAlO2[J]. Nature, 1997, 389(6654): 939-942.
[7] [7] Ahmadi M, Asemi M, Ghanaatshoar M. Mg and Nco-doped CuCrO2: A record breaking p-type TCO[J]. Applied Physics Letters, 2018, 113(24): 242101.
[8] [8] Sun Y J, Shuai Z G, Wang D. Reducing lattice thermal conductivity of the thermoelectric SnSe monolayer: role of phonon-electron coupling[J]. The Journal of Physical Chemistry C, 2019, 123(18): 12001-12006.
[9] [9] XiJ Y, Wang D, Yi Y P, et al. Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach[J]. The Journal of chemical physics, 2014, 141(3): 034704.
[10] [10] Monserrat B. Electron-phonon coupling from finite-differences[J]. Journal of Physics: Condensed Matter, 2018, 30(8): 083001.
[11] [11] Li J, Sleight A W, Jones C Y, et al. Trends in negative thermal expansion behavior for AMO2(A=Cuor Ag; M= Al, Sc, In, or La) compounds with the delafossite structure[J]. Journal of Solid StateChemistry, 2005, 178(1): 285-294.
[12] [12] Daichakomphu N, Klongratog B, Rodpun P, et al. Improving the photo-thermoelectric performance of CuAlO2 via doping with Bi[J]. Materials Research Bulletin, 2021, 144: 111479.
[13] [13] Aziziha M, Akbarshahi S, Ghosh S, et al. Phonon-Dynamics in Anisotropic Dilute CuAl1-xFexO2 Dela-fossite Alloys by a Weighted Dynamical Matrix Approach[J]. The Journal of Physical Chemistry C, 2019, 123(50): 30604-30612.
[14] [14] Pokhriyal P, Kumar A, Singh M N, et al. Distorted octahedra induced anisotropic strain and local disorder in delafossite CuCrO2[J]. Solid State Sciences, 2021, 117: 106602.
[15] [15] Han M J, Jiang K, Zhang J Z, et al. Structural, electronic band transition and optoelectronic properties of delafossite CuGa1-xCrxO2 (0≤x≤1) solid solution films grown by the sol-gel method[J]. Journal of Materials Chemistry, 2012, 22(35): 18463-18470.
[16] [16] Saleh S A, Albarg H B. Structure, Optical, and Dielectric Properties of Cu1-xAgxAlO2 Nanoparticles[J]. Preprints, 2023, 4: 0544.
[17] [17] Dodiya N, Varshney D. Structural properties and Raman spectroscopy of rhombohedral La1-xNaxMnO3(0.075≤x≤0.15)[J]. Journal of Molecular Structure, 2013, 1031: 104-109.
[18] [18] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133.
[19] [19] Perdew J P, Burke K, Ernzerhof M. Comment on "Generalized gradient approximation made simple "Reply[J]. Physical Review Letters, 1998, 80(4): 891.
[20] [20] Blochl P E, Jepsen O, Andersen O K. Improved terahedron method for Brillouin-zone integrations[J]. Physical Review B, 1994, 49(23): 16223-16233.
[21] [21] Pantian S, Sakdanuphab R, Sakulkalavek A. Enhancing the electrical conductivity and thermoelectric figure of merit of the p-type delafossite CuAlO2 by Ag2O addition[J]. Current Applied Physics, 2017, 17(10): 1264-1270.
[22] [22] Vegard L. VI. Results of crystal analysis[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1916, 32(187): 65-96.
[23] [23] Vegard L. LV. Results of crystal analysis.-III[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1916, 32(191): 505-518.
[24] [24] Ramkumar C, Jain K P, Abbi S C. Raman-scattering probe of anharmonic effects due to temperature and compositional disorder in III-V binary and ternary alloy semiconductors[J]. Physical Review B, 1996, 53(20): 13672.
[25] [25] Wu P, Xia K, Peng K, et al. Strong anharmonicityin tin monosulfide evidenced by local distortion, high-energy optical phonons, and anharmonic potential[J]. Physical Review B, 2021, 103(19): 195204.
[26] [26] Menndez J, Cardona M, Temperature dependence of the first-order Raman scattering by phonons inSi, Ge, and -Sn: Anharmonic effects[J]. Physical Review B, 1984, 29(4): 2051.
[27] [27] Pavunny S P, Kumar A, Katiyar R S. Raman spectroscopy and field emission characterization of delafossite CuFeO2[J]. Journal of Applied Physics, 2010, 107(1): 013522.
[28] [28] Wang F, Zhou B, Sun H, et al. Difference analysis model for the mismatch effect and substrate-induced lattice deformation in atomically thin materials[J]. Physical Review B, 2018, 98(24): 245403.
[29] [29] Kolesov B A. How the vibrational frequency varies with temperature[J]. Journal of Raman Spectroscopy, 2017, 48(2): 323-326.
Get Citation
Copy Citation Text
LANG Yuhang, HU Qiwei, ZHANG Yin, XIE Yinghua, LI Shengnan, LIN Boyu, LEI Li, YUAN Yuquan. Phonon anharmonic effects in semiconductor material CuAlO2[J]. The Journal of Light Scattering, 2025, 37(1): 30
Category:
Received: Oct. 8, 2024
Accepted: Apr. 30, 2025
Published Online: Apr. 30, 2025
The Author Email: HU Qiwei (qiweihu@suse.edu.cn)