Chinese Journal of Lasers, Volume. 51, Issue 18, 1800003(2024)

Advancements in MultiMode Quantum Entanglement Networks

Jiawei Wang1,2,3, Pei Zhang2,3, and Yin Cai1,4、*
Author Affiliations
  • 1Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi , China
  • 2Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, Shaanxi , China
  • 3Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Xi’an 710049, Shaanxi , China
  • 4Shaanxi Key Lab of Information Photonic Technique, Xi’an 710049, Shaanxi , China
  • show less
    References(120)

    [19] Tian B X, Hou Z B, Xiang G Y. Enhancing minimum-consumption discrimination of two-qubit quantum states via entangling measurements (invited)[J]. Laser & Optoelectronics Progress, 61, 0327001(2024).

    [29] Wu Y L, Bao W S, Cao S R et al. Strong quantum computational advantage using a superconducting quantum processor[J]. Physical Review Letters, 127, 180501(2021).

    [64] Su X L, Han D M, Wang N et al. Advances in entanglement-based remote state preparation (invited)[J]. Laser & Optoelectronics Progress, 61, 0127001(2024).

    [73] Su X L, Zhao Y P, Hao S H et al. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Optics Letters, 37, 5178-5180(2012).

    [74] Armstrong S, Morizur J F, Janousek J et al. Programmable multimode quantum networks[J]. Nature Communications, 3, 1026(2012).

    [75] Yokoyama S, Ukai R, Armstrong S C et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain[J]. Nature Photonics, 7, 982-986(2013).

    [76] Larsen M V, Guo X S, Breum C R et al. Deterministic generation of a two-dimensional cluster state[J]. Science, 366, 369-372(2019).

    [78] Madsen L S, Laudenbach F, Askarani M F et al. Quantum computational advantage with a programmable photonic processor[J]. Nature, 606, 75-81(2022).

    [81] Cai Y, Roslund J, Ferrini G et al. Multimode entanglement in reconfigurable graph states using optical frequency combs[J]. Nature Communications, 8, 15645(2017).

    [82] Larsen M V, Guo X S, Breum C R et al. Fiber-coupled EPR-state generation using a single temporally multiplexed squeezed light source[J]. NPJ Quantum Information, 5, 46(2019).

    [84] Wu B H, Alexander R N, Liu S et al. Quantum computing with multidimensional continuous-variable cluster states in a scalable photonic platform[J]. Physical Review Research, 2, 023138(2020).

    [85] Zhou Y F, Wang W, Song T T et al. Ultra-large-scale deterministic entanglement containing 2×20 400 optical modes based on time-delayed quantum interferometer[J]. Physical Review Letters, 130, 060801(2023).

    [87] Corzo N V, Marino A M, Jones K M et al. Noiseless optical amplifier operating on hundreds of spatial modes[J]. Physical Review Letters, 109, 043602(2012).

    [90] Pan X Z, Yu S, Zhou Y F et al. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor[J]. Physical Review Letters, 123, 070506(2019).

    [91] Wang W, Zhang K, Jing J T. Large-scale quantum network over 66 orbital angular momentum optical modes[J]. Physical Review Letters, 125, 140501(2020).

    [92] Cai Y, Feng J L, Wang H L et al. Quantum-network generation based on four-wave mixing[J]. Physical Review A, 91, 013843(2015).

    [93] Liu Y, Cai Y, Xiang Y et al. Tripartite Einstein‒Podolsky‒Rosen steering with linear and nonlinear beamsplitters in four-wave mixing of rubidium atoms[J]. Optics Express, 27, 33070-33079(2019).

    [94] Cai Y, Hao L, Zhang D et al. Multimode entanglement generation with dual-pumped four-wave-mixing of rubidium atoms[J]. Optics Express, 28, 25278-25292(2020).

    [95] Xiang Y, Liu Y, Cai Y et al. Monogamy relations within quadripartite Einstein‒Podolsky‒Rosen steering based on cascaded four-wave mixing processes[J]. Physical Review A, 101, 053834(2020).

    [96] Liu Y, Cai Y, Luo B S et al. Collective multipartite Einstein‒Podolsky‒Rosen steering via cascaded four-wave mixing of rubidium atoms[J]. Physical Review A, 104, 033704(2021).

    [97] Liu Y L, Wei J J, Niu M Q et al. Atomic-coherence-assisted multipartite entanglement generation with dressing-energy-level-cascaded four-wave mixing[J]. Physical Review A, 106, 043709(2022).

    [98] Qin Z Z, Cao L M, Wang H L et al. Experimental generation of multiple quantum correlated beams from hot rubidium vapor[J]. Physical Review Letters, 113, 023602(2014).

    [99] Zhang K, Wang W, Liu S S et al. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing processes[J]. Physical Review Letters, 124, 090501(2020).

    [100] Pysher M, Miwa Y, Shahrokhshahi R et al. Parallel generation of quadripartite cluster entanglement in the optical frequency comb[J]. Physical Review Letters, 107, 030505(2011).

    [101] Arzani F, Fabre C, Treps N. Versatile engineering of multimode squeezed states by optimizing the pump spectral profile in spontaneous parametric down-conversion[J]. Physical Review A, 97, 033808(2018).

    [102] Cai Y, Xiang Y, Liu Y et al. Versatile multipartite Einstein‒Podolsky‒Rosen steering via a quantum frequency comb[J]. Physical Review Research, 2, 032046(2020).

    [105] Larsen M V, Guo X S, Breum C R et al. Deterministic multi-mode gates on a scalable photonic quantum computing platform[J]. Nature Physics, 17, 1018-1023(2021).

    [106] Zhang M, Kang H J, Wang M H et al. Quantifying quantum coherence of optical cat states[J]. Photonics Research, 9, 887-892(2021).

    [107] Armstrong S, Wang M, Teh R Y et al. Multipartite Einstein‒Podolsky‒Rosen steering and genuine tripartite entanglement with optical networks[J]. Nature Physics, 11, 167-172(2015).

    [109] He Q Y, Rosales-Zárate L, Adesso G et al. Secure continuous variable teleportation and Einstein‒Podolsky‒Rosen steering[J]. Physical Review Letters, 115, 180502(2015).

    [111] Ma Y Q, Miao H X, Pang B H et al. Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement[J]. Nature Physics, 13, 776-780(2017).

    [112] Abbott B P, Abbott R, Abbott T D et al. GW150914: the advanced LIGO detectors in the era of first discoveries[J]. Physical Review Letters, 116, 131103(2016).

    [113] Wu S H, Bao G Z, Guo J X et al. Quantum magnetic gradiometer with entangled twin light beams[J]. Science Advances, 9, eadg1760(2023).

    [115] Li B B, Bílek J, Hoff U B et al. Quantum-enhanced optomechanical magnetometry[J]. Optica, 5, 850-856(2018).

    [116] Xia Y, Li W, Clark W et al. Demonstration of a reconfigurable entangled radio-frequency photonic sensor network[J]. Physical Review Letters, 124, 150502(2020).

    [118] Ma L X, Lei X, Yan J L et al. High-performance cavity-enhanced quantum memory with warm atomic cell[J]. Nature Communications, 13, 2368(2022).

    [119] Yan Z H, Wu L, Jia X J et al. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles[J]. Nature Communications, 8, 718(2017).

    [120] Appel J, Figueroa E, Korystov D et al. Quantum memory for squeezed light[J]. Physical Review Letters, 100, 093602(2008).

    Tools

    Get Citation

    Copy Citation Text

    Jiawei Wang, Pei Zhang, Yin Cai. Advancements in MultiMode Quantum Entanglement Networks[J]. Chinese Journal of Lasers, 2024, 51(18): 1800003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: May. 21, 2024

    Accepted: Aug. 1, 2024

    Published Online: Sep. 9, 2024

    The Author Email: Cai Yin (caiyin@xjtu.edu.cn)

    DOI:10.3788/CJL240894

    CSTR:32183.14.CJL240894

    Topics