Acta Optica Sinica, Volume. 44, Issue 18, 1800009(2024)

Design and Simulation of a Multi-Beam Cloud Lidar Based on a New Generation Polar Orbit Satellite (Invited)

Decang Bi1,2,3,4, Jiqiao Liu1,2,3,4, Ziyu Bi1,2,4, Jian Shang5, Yong Yang6, Fengxin Xin1, Pengfei Zhang6, Haofei Wang5, Zhiqiang Bian6, Weibiao Chen2,4、*, and Xiuqing Hu5、**
Author Affiliations
  • 1Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China
  • 6Shanghai Institute of Satellite Engineering, Shanghai 201109, China
  • show less
    Figures & Tables(13)
    Scheme of M3CL
    Error upper limit of backscattering coefficients. (a) General drawing; (b) partial detail-sketch
    Detection error upper limit with different βMie/βmol under the same RSN
    Extinection efficiency sensitivity of light with different detection wavelengths
    HSRL cloud SNR distribution under different wavebands (1 km cloud thickness and weak scattering condition). (a) 355 nm; (b) 532 nm
    Three wavelength cloud detection SNR distribution (3 km cloud thickness and weak scattering condition)
    HSRL cloud SNR distribution under different wavebands (2 km cloud thickness and intense scattering condition). (a) 355 nm; (b) 532 nm
    Three wavelength cloud detection SNR distribution (2 km cloud thickness intense scattering condition with 5 km altitude)
    HSRL aerosol detection SNR distribution. (a) Three detection channels SNR at 355 nm; (b) three detection channels SNR at 532 nm
    Aerosol detection SNR distribution detected by energy detection channels under different spatial resolutions. (a) Horizontal resolution is 20 km and vertical resolution is 200 m; (b) horizontal resolution is 50 km and vertical resolution is 200 m
    • Table 1. Main parameters of spaceboirne M3CL

      View table

      Table 1. Main parameters of spaceboirne M3CL

      ParameterValue
      Orbit820 km
      Swath20 km

      Wavelength

      (detection schematic)

      355 nm (Fabry-Perot HSRL+∥⊥)

      532 nm (iodine HSRL+∥⊥)

      532 nm+1064 nm+1625 nm (energy)

      Pulse energy

      15 mJ@355 nm

      50 mJ@532 nm (HSRL)

      15×8 mJ@532 nm

      50 mJ@1064 nm

      25 mJ@1625 nm

      Pulse repetition frequency200 Hz
      Beam pointing interval3.05 mrad
      Beam divergence0.080 mrad (along track)×24.50 mrad (crossing track)
      Diameter of telescope1.0 m
      Receiver field of view0.15 mrad (along track)×24.65 mrad (crossing track)
      Optical bandwidth

      20 pm@532 nm & 355 nm

      300 pm@1064 nm & 1625 nm

    • Table 2. Input parameters of error limitation

      View table

      Table 2. Input parameters of error limitation

      ParameterError limitation /%
      Molecular backscattering coefficient βmol1
      Molecular scattering spectrum Rmol(v)3
      Iodine line calibration accuracy f1
      Channel constant calibration accuracy ς5
    • Table 3. Input simulation parameters

      View table

      Table 3. Input simulation parameters

      ParameterValue
      Atmosphere modeModtran
      Sun background45° solar elevation
      Thick cumulonimbus cumulus backscattering coefficient

      355 nm: βb=4.116×10-4 m-1·sr-1, σ=6.174×10-3 m-1

      532 nm: βb=4.122×10-4 m-1·sr-1, σ=6.183×10-3 m-1

      1064 nm: βb=4.132×10-4 m-1·sr-1, σ=6.199×10-3 m-1

      1625 nm: βb=4.308×10-4 m-1·sr-1, σ=6.463×10-3 m-1

      Thin cumulus backscattering coefficient

      355 nm: βb=2.583×10-5 m-1·sr-1, σ=5.166×10-4 m-1

      532 nm: βb=2.597×10-5 m-1·sr-1, σ=5.194×10-4 m-1

      1064 nm: βb=2.669×10-5 m-1·sr-1, σ=5.338×10-4 m-1

      1625 nm: βb=2.749×10-5 m-1·sr-1, σ=5.498×10-4 m-1

      Detector noise

      1 nA@532 nm & 355 nm

      1 nA/Hz @1064 nm

      0.2 nA/Hz@1625 nm

      Horizontal resolution

      Cloud: 2.5 km/5 km

      Aerosol: 20 km/50 km

      Vertical resolution100 m/200 m/1 km
    Tools

    Get Citation

    Copy Citation Text

    Decang Bi, Jiqiao Liu, Ziyu Bi, Jian Shang, Yong Yang, Fengxin Xin, Pengfei Zhang, Haofei Wang, Zhiqiang Bian, Weibiao Chen, Xiuqing Hu. Design and Simulation of a Multi-Beam Cloud Lidar Based on a New Generation Polar Orbit Satellite (Invited)[J]. Acta Optica Sinica, 2024, 44(18): 1800009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Apr. 16, 2024

    Accepted: Jul. 16, 2024

    Published Online: Sep. 11, 2024

    The Author Email: Chen Weibiao (wbchen@siom.ac.cn), Hu Xiuqing (huxq@cma.gov.cn)

    DOI:10.3788/AOS240855

    CSTR:32393.14.AOS240855

    Topics