Chinese Journal of Lasers, Volume. 41, Issue 9, 906001(2014)
Using Fluorescent Microscopy Method to Study Subsurface Defects in Nd-Doped Phosphate Laser Glasses
[1] [1] H Peng, X F Zhang, X Wei, et al.. Design of 60-kJ SG-III laser facility and related technology development[C]. SPIE, 2001, 4424: 98-103.
[2] [2] E Moses, G Miller, C Wuest. The national ignition facility: Enabling fusion ignition for the 21st century[J]. Nuclear Fusion, 2004, 44(2): 228-238.
[3] [3] M L Andre. Status of the LMJ project[C]. SPIE, 1997, 3047: 38-42.
[4] [4] H Liu, J Huang, F Wang, et al.. Subsurface defects of fused silica optics and laser induced damage at 351 nm[J]. Opt Express, 2013, 21(10): 12204-12217.
[5] [5] B Mullany, M Mainuddin. The influence of process vibrations on precision polishing metrics[J]. CIRP Annals-Manufacturing Technology, 2012, 61(1): 555-558.
[6] [6] Y Zhou, P D Funkenbusch, D J Quesnel, et al.. Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses[J]. Journal of the American Ceramic Society, 1994, 77(12): 3277-3280.
[7] [7] X Tonnellier, P Morantz, P Shore, et al.. Subsurface damage in precision ground ULE and Zerodur surfaces[J]. Opt Express, 2007, 15(19): 12197-12205.
[8] [8] X Tonnellier, P Shore, X Luo, et al.. Wheel wear and surface/subsurface qualities when precision grinding optical materials[C]. SPIE, 2006, 6273: 627308.
[9] [9] X Sun, D Stephenson, O Ohnishi, et al.. An investigation into parallel and cross grinding of BK7 glass[J]. Precision Engineering, 2006, 30(2): 145-153.
[10] [10] S Li, Z Wang, Y Wu. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes[J]. Journal of Materials Processing Technology, 2008, 205(1): 34-41.
[11] [11] J A Menapace, P J Davis, W A Steele, et al.. MRF applications: Measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique[C]. SPIE, 2005, 5991: 599103.
[12] [12] P Kumar, J Lee, G Lee, et al.. Low temperature wet etching to reveal sub-surface damage in sapphire substrates[J]. Applied Surface Science, 2013, 273(1): 58-61.
[13] [13] L Wong, T Suratwala, M Feit, et al.. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica[J]. Journal of Non-Crystalline Solids, 2009, 355(13): 797-810.
[14] [14] J Neauport, C Ambard, P Cormont, et al.. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J]. Opt Express, 2009, 17(22): 20448-20456.
[15] [15] T A Germer, C C Asmail. Polarization of light scattered by microrough surfaces and subsurface defects[J]. JOSA A, 1999, 16(6): 1326-1332.
[16] [16] Xu Yi, Xu Yuxian, Hui Mei, et al.. Quantitative surface topography determination by differential interference contrast microscopy[J]. Optics and Precision Enginering, 2001, 9(3): 226-229.
[18] [18] Xu Peng, He Hong, Ding Zhihua. Research in subsurface morphologies of jades with optic coherence tomography[J]. Chinese J Lasers, 2011, 38(5): 0508004.
[20] [20] Chen Yuhua. Research on the Visual Detetion of Subsurface Defects Using Magneto-Optic Microscopy[D]. Chengdu: Sichuan University, 2007. 1-9.
[22] [22] J Neauport, P Cormont, P Legros, et al.. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy[J]. Opt Express, 2009, 17(5): 3543-3554.
[23] [23] W B Williams, B A Mullany, W C Parker, et al.. Using quantum dots to tag subsurface damage in lapped and polished glass samples[J]. Appl Opt, 2009, 48(27): 5155-5163.
[24] [24] J H Wang, J Bartlett, A Dunn, et al.. The use of Rhodamine 6G and fluorescence microscopy in the evaluation of phospholipid-based polymeric biomaterials[J]. Journal of Microscopy, 2005, 217(3): 216-224.
[25] [25] A Penzkofer, W Leupacher. Fluorescence behaviour of highly concentrated Rhodamine 6G solutions[J]. Journal of Luminescence, 1987, 37(2): 61-72.
[26] [26] K Jukeviius, R Buzelis, S Kias, et al.. Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates[C]. SPIE, 2013, 8885: 888529.
[27] [27] D W Camp, M R Kozlowski, L M Sheehan, et al.. Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces[C]. SPIE, 1997, 3244: 350-364.
[28] [28] B Lawn, R Wilshaw. Indentation fracture: Principles and applications[J]. Journal of Materials Science, 1975, 10(6): 1049-1081.
[29] [29] S He, R Gunda, R Singh. Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness[J]. Journal of Sound and Vibration, 2007, 301(3): 927-949.
[30] [30] Zhang Lei . FDTD Analysis of Surface Defects Related to Laser-Induced Damage on Optical Glass Surfaces[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, 2012. 27-33.
Get Citation
Copy Citation Text
Wang Wei, Zhang Lei, Feng Suya, Chen Wei, Hu Lili. Using Fluorescent Microscopy Method to Study Subsurface Defects in Nd-Doped Phosphate Laser Glasses[J]. Chinese Journal of Lasers, 2014, 41(9): 906001
Category: materials and thin films
Received: Mar. 17, 2014
Accepted: --
Published Online: Aug. 15, 2014
The Author Email: Wei Wang (lplace123@gmail.com)