Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1828004(2024)

Remote Sensing Object Detection Methods Based on Improved YOLOv5s

Kailun Cheng1,2, Xiaobing Hu1,2、*, Haijun Chen1,2, and Hu Li1,2
Author Affiliations
  • 1School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • 2Yibin Institute of Industrial Technology, Sichuan University, Yibin 644005, Sichuan, China
  • show less
    Figures & Tables(11)
    Network structure of YOLOv5s
    Network structure of improved YOLOv5s
    Structure of C3 and CA module. (a) Structure of C3 module; (b) structure of CA module
    Structure of DWCA and C3DWCA module. (a) Structure of DWCA module; (b) structure of C3DWCA module
    Structure of module. (a) Structure of FPN module; (b) structure of PANet module; (c) structure of BiFPN module
    Schematic diagram of sample classification
    Contrast of modle test results
    • Table 1. Hyperparameters of network training

      View table

      Table 1. Hyperparameters of network training

      HyperparameterValue
      Learning rate0.01
      Learning rate decay0.0001
      Weight-decay0.0005
      Momentum0.937
      Batch32
      Epoch200
      Image size800×800
    • Table 2. Results of ablation experiment

      View table

      Table 2. Results of ablation experiment

      ModelPRmAP@0.5
      YOLOv5s88.381.286.3
      YOLOv5s+C3DWCA94.591.395.4
      YOLOv5s+BiFPN89.986.991.6
      YOLOv5s+C3DWCA+BiFPN95.592.096.1
    • Table 3. Contrast of AP before and after modle improvement

      View table

      Table 3. Contrast of AP before and after modle improvement

      ClassAP /%Increment
      YOLOv5sImproved YOLOv5s
      Airplane97.099.22.20 percentage points
      Airport91.398.26.90 percentage points
      Baseball field97.799.41.70 percentage points
      Basketball court92.999.26.30 percentage points
      Bridge59.083.724.70 percentage points
      Chimney90.999.48.50 percentage points
      Dam77.498.921.50 percentage points
      Expressway-service-area94.199.35.20 percentage points
      Expressway-toll-station91.797.45.70 percentage points
      Harbor69.392.823.50 percentage points
      Golf course78.298.820.60 percentage points
      Ground track field92.898.55.70 percentage points
      Overpass75.792.316.60 percentage points
      Ship94.596.21.70 percentage points
      Stadium93.298.75.50 percentage points
      Storage tank88.692.03.40 percentage points
      Tennis court96.398.92.60 percentage points
      Train station77.698.621.00 percentage points
      Vehicle72.582.710.20 percentage points
      Windmill94.597.12.60 percentage points
    • Table 4. Contrast of model performance before and after modle improvement

      View table

      Table 4. Contrast of model performance before and after modle improvement

      ModelP /%R /%mAP /%FLOPs /G
      YOLOv5s88.381.286.316.0
      Improved YOLOv5s95.592.096.117.5
    Tools

    Get Citation

    Copy Citation Text

    Kailun Cheng, Xiaobing Hu, Haijun Chen, Hu Li. Remote Sensing Object Detection Methods Based on Improved YOLOv5s[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1828004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 11, 2024

    Accepted: Feb. 5, 2024

    Published Online: Sep. 9, 2024

    The Author Email: Xiaobing Hu (scuhxb@163.com)

    DOI:10.3788/LOP240576

    CSTR:32186.14.LOP240576

    Topics