Acta Photonica Sinica, Volume. 52, Issue 1, 0123001(2023)
Organic Light-emitting Diodes Prepared by All-solution Processing and the Effect of PEIE Concentration on Photoelectric Properties of Devices
[1] SASABE H, KIDO J. Development of high performance OLEDs for general lighting[J]. Journal of Materials Chemistry C, 1, 1699-1707(2013).
[2] ZENG W, LAI H Y, LEE W K et al. Achieving nearly 30% external quantum efficiency for orange-red organic light emitting diodes by employing thermally activated delayed fluorescence emitters composed of 1, 8‐naphthalimide‐acridine hybrids[J]. Advanced Materials, 30, 1704961(2018).
[3] KIM D H, PARK N H, KIM T W. Highly efficient flexible organic light-emitting devices based on PEDOT:PSS electrodes doped with highly conductive Pyronin B[J]. Nano Energy, 65, 104027(2019).
[4] KONG B K, KIM D H, KIM T W. Significant enhancement of out-coupling efficiency for yarn-based organic light-emitting devices with an organic scattering layer[J]. Nano Energy, 70, 104503(2020).
[5] TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 51, 913-915(1987).
[6] LIU Y, LI F, QIU L et al. Fluorescent microarrays of in-situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing[J]. ACS Nano, 13, 2042-2049(2019).
[7] SU R, PARK S H, OUYANG X et al. 3D-printed flexible organic light-emitting diode displays[J]. Science Advances, 8, eabl8798(2022).
[8] HAN D, KHAN Y, GOPALAN K et al. Emission area patterning of organic light‐emitting diodes (OLEDs) via printed dielectrics[J]. Advanced Functional Materials, 28, 1802986(2018).
[9] MA D, ZHANG C, LIU R et al. Toward high‐performance vacuum‐deposited OLEDs: sublimable cationic lridium (Ⅲ) complexes with yellow and orange electroluminescence[J]. Chemistry-A European Journal, 24, 5574-5583(2018).
[10] KOTADIYA N B, BLOM P W M, WETZELAER G J A H. Efficient and stable single-layer organic light-emitting diodes based on thermally activated delayed fluorescence[J]. Nature Photonics, 13, 765-769(2019).
[11] HUSEYNOVA G, LEE J H, KIM Y H et al. Transparent organic light‐emitting diodes: advances, prospects, and challenges[J]. Advanced Optical Materials, 9, 2002040(2021).
[12] HÖFLE S, SCHIENLE A, BERNHARD C et al. Solution processed, white emitting tandem organic light‐emitting diodes with inverted device architecture[J]. Advanced Materials, 26, 5155-5159(2014).
[13] PU Y J, CHIBA T, IDETA K et al. Fabrication of organic light‐emitting devices comprising stacked light‐emitting units by solution‐based processes[J]. Advanced Materials, 27, 1327-1332(2015).
[14] HÖFLE S, BERNHARD C, BRUNS M et al. Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture[J]. ACS Applied Materials & Interfaces, 7, 8132-8137(2015).
[15] ZHANG M, HÖFLE S, CZOLK J et al. All-solution processed transparent organic light emitting diodes[J]. Nanoscale, 7, 20009-20014(2015).
[16] HUANG J, XU Z, YANG Y. Low‐work‐function surface formed by solution‐processed and thermally deposited nanoscale layers of cesium carbonate[J]. Advanced Functional Materials, 17, 1966-1973(2007).
[17] XU Z Q, YANG J P, SUN F Z et al. Efficient inverted polymer solar cells incorporating doped organic electron transporting layer[J]. Organic Electronics, 13, 697-704(2012).
[18] HÖFLE S, SCHIENLE A, BRUNS M et al. Enhanced electron injection into inverted polymer light‐emitting diodes by combined solution‐processed zinc oxide/polyethylenimine interlayers[J]. Advanced Materials, 26, 2750-2754(2014).
[19] HUNG L S, ZHANG R Q, HE P et al. Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes[J]. Journal of Physics D: Applied Physics, 35, 103(2001).
[20] LOZANO-HERNÁNDEZ L A, MALDONADO J L, HERNÁNDEZ-CRUZ O et al. Structurally simple OLEDs based on a new fluorinated poly (oxindolylidenearylene)[J]. Dyes and Pigments, 173, 107989(2020).
[21] SARALA L, YATHIRAJULA R B, GOPIKRISHNA P et al. Pronounced luminescence efficiency and thermal stability of small imidazole architect 2-(1, 4, 5-triphenyl-1H-imidazol-2-yl) phenol for efficient non-doped blue OLEDs[J]. Journal of Photochemistry and Photobiology A: Chemistry, 365, 232-237(2018).
[22] ZHOU Y, FUENTES-HERNANDEZ C, SHIM J et al. A universal method to produce low–work function electrodes for organic electronics[J]. Science, 336, 327-332(2012).
[23] KIM J H, PARK J W. Designing an electron-transport layer for highly efficient, reliable, and solution-processed organic light-emitting diodes[J]. Journal of Materials Chemistry C, 5, 3097-3106(2017).
[24] ZHANG Xiaoliang, XU Yanan, CHEN Yuehua. Inverted white light organic-emitting diodes[J]. Chinese Journal of Luminescence, 41, 1397-1402(2020).
[25] MAHDIYAR R, FADAVIESLAM M R. The effects of chemical treatment on ITO properties and performance of OLED devices[J]. Optical and Quantum Electronics, 52, 1-12(2020).
[26] HUANG F, LIU H, LI X et al. Highly efficient hole injection/transport layer-free OLEDs based on self-assembled monolayer modified ITO by solution-process[J]. Nano Energy, 78, 105399(2020).
[27] CINQUINO M, PRONTERA C T, ZIZZARI A et al. Effect of surface tension and drying time on inkjet-printed PEDOT: PSS for ITO-free OLED devices[J]. Journal of Science: Advanced Materials and Devices, 7, 100394(2022).
[28] LEE J, KIM Y H. High performance ITO-free white organic light-emitting diodes using highly conductive PEDOT:PSS transparent electrodes[J]. Synthetic Metals, 242, 99-102(2018).
[29] WANG T, JING L C, BAO Z et al. Strong adhesion and high optoelectronic performance hybrid graphene/carbon nanotubes transparent conductive films for green-light OLED devices[J]. Surfaces and Interfaces, 24, 101137(2021).
[30] TIAN Y, WANG T, ZHU Q et al. High-performance transparent PEDOT: PSS/CNT films for OLEDs[J]. Nanomaterials, 11, 2067(2021).
[31] KIM Y, YOO S, KIM J H. Water-based highly stretchable PEDOT: PSS/Nonionic WPU transparent electrode[J]. Polymers, 14, 949(2022).
[32] WANG Z, WANG M, JIAO B et al. Smooth and mechanically robust random metallic mesh electrode modified by thermally transferred PEDOT: PSS for ITO-Free flexible organic light-emitting diodes[J]. Organic Electronics, 106, 106498(2022).
[33] JUNG E, KIM C, KIM M et al. Roll-to-roll preparation of silver-nanowire transparent electrode and its application to large-area organic light-emitting diodes[J]. Organic Electronics, 41, 190-197(2017).
[34] XIA Y, SUN K, OUYANG J. Solution‐processed metallic conducting polymer films as transparent electrode of optoelectronic devices[J]. Advanced Materials, 24, 2436-2440(2012).
[35] ZENG W J, WU H B, ZHANG C et al. Polymer light‐emitting diodes with cathodes printed from conducting Ag paste[J]. Advanced Materials, 19, 810-814(2007).
[36] LIANG J, LI L, NIU X et al. Fully solution-based fabrication of flexible light-emitting device at ambient conditions[J]. The Journal of Physical Chemistry C, 117, 16632-16639(2013).
[37] HERNANDEZ S G, BORNEMANN N, RINGLE I et al. Rheological and drying considerations for uniformly gravure-printed layers: towards large-area flexible organic light-emitting diodes[J]. Advanced Functional Materials, 23, 3164-3171(2013).
Get Citation
Copy Citation Text
Chenxi WANG, Guodong LIU, Fanghui ZHANG, Yinfeng WANG, Zhongming SONG. Organic Light-emitting Diodes Prepared by All-solution Processing and the Effect of PEIE Concentration on Photoelectric Properties of Devices[J]. Acta Photonica Sinica, 2023, 52(1): 0123001
Category: Optical Device
Received: Jul. 8, 2022
Accepted: Aug. 26, 2022
Published Online: Feb. 27, 2023
The Author Email: Guodong LIU (liuguodong@sust.edu.cn)