Acta Laser Biology Sinica, Volume. 30, Issue 3, 193(2021)
Organic Light-emitting Diode for Biomedicine
[1] [1] SONG J, LEE H, JEONG E G, et al. Organic light-emitting diodes: pushing toward the limits and beyond[J]. Advanced Materials, 2020, 32(35): e1907539.
[2] [2] TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12): 913-915.
[3] [3] LU C Y, JIAO M, LEE W K, et al. Achieving above 60% external quantum efficiency in organic light-emitting devices using ITO-free low-index transparent electrode and emitters with preferential horizontal emitting dipoles[J]. Advanced Functional Materials, 2016, 26(19): 3250-3258.
[4] [4] LIU Y F, FENG J, BI Y G, et al. Recent developments in flexible organic light-emitting devices[J]. Advanced Materials Technologies, 2019, 4(1): 1800371.
[5] [5] BURROUGHES J H, BRADLEY D C, BROWN A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293): 539-541.
[6] [6] WHITE M S, KALTENBRUNNER M, G?OWACKI E D, et al. Ultrathin, highly flexible and stretchable PLEDs[J]. Nature Photonics, 2013, 7(10): 811-816.
[7] [7] CHOI S, KWON S, KIM H, et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays[J]. Scientific Reports, 2017, 7(1): 6424.
[8] [8] YIN D, FENG J, MA R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nature Communications, 2016, 7: 11573.
[9] [9] SMITH J T, O’BRIEN B, LEE Y K, et al. Application of flexible OLED display technology for electro-optical stimulation and/or silencing of neural activity[J]. Journal of Display Technology, 2014, 10(6): 514-520.
[10] [10] KOETSE M, RENSING P, VAN HECK G, et al. In plane optical sensor based on organic electronic devices[C]//Proceedings Volume 7054, Organic Field-Effect Transistors VII and Organic Semiconductors in Sensors and Bioelectronics. San Diego: SPIE, 2008: 70541I.
[11] [11] LI B H, LIN L S, LIN H Y, et al. Photosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapy[J]. Journal of Biophotonics, 2016, 9(11/12): 1314-1325.
[12] [12] LANGMACK K, MEHTA R, TWYMAN P, et al. Topical photodynamic therapy at low fluence rates-theory and practice[J]. Journal of Photochemistry and Photobiology: B, Biology, 2001, 60(1): 37-43.
[13] [13] ZAMPETTI A, MINOTTO A, CACIALLI F. Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities[J]. Advanced Functional Materials, 2019, 29(21): 1807623.
[14] [14] KIM M M, DARAFSHEH A. Light sources and dosimetry techniques for photodynamic therapy[J]. Photochemistry and Photobiology, 2020, 96(2): 280-294.
[15] [15] SCHWARTZ G, TEE B C K, MEI J G, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring[J]. Nature Communications, 2013, 4: 1859.
[16] [16] CHOI S, PARK J, HYUN W, et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy[J]. ACS Nano, 2015, 9(6): 6626-6633.
[17] [17] MOSELEY H, ALLEN J W, IBBOTSON S, et al. Ambulatory photodynamic therapy: a new concept in delivering photodynamic therapy[J]. The British Journal of Dermatology, 2006, 154(4): 747-750.
[18] [18] EVANS J. High-tech bandages lighten the load of light therapy[J]. Nature Medicine, 2009, 15(7): 713.
[19] [19] LIAN C, PIKSA M, YOSHIDA K, et al. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy[J]. NPJ Flexible Electronics, 2019, 3(1): 1-6.
[20] [20] JEON Y, NOH I, SEO Y C, et al. Parallel-stacked flexible organic light-emitting diodes for wearable photodynamic therapeutics and color-tunable optoelectronics[J]. ACS Nano, 2020, 14(11): 15688-15699.
[21] [21] GUO H W, LIN L T, CHEN P H, et al. Low-fluence rate, long duration photodynamic therapy in glioma mouse model using organic light emitting diode (OLED)[J]. Photodiagnosis and Photodynamic Therapy, 2015, 12(3): 504-510.
[22] [22] ATTILI S K, LESAR A, MCNEILL A, et al. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer[J]. The British Journal of Dermatology, 2009, 161(1): 170-173.
[23] [23] ERICSON M N, WILSON M A, COTé G L, et al. Implantable sensor for blood flow monitoring after transplant surgery[J]. Minimally Invasive Therapy & Allied Technologies, 2004, 13(2): 87-94.
[24] [24] BONATO P. Advances in wearable technology and applications in physical medicine and rehabilitation[J]. Journal of Neuroengineering and Rehabilitation, 2005, 2(1): 2.
[25] [25] Ní SCANAILL C, CAREW S, BARRALON P, et al. A review of approaches to mobility telemonitoring of the elderly in their living environment[J]. Annals of Biomedical Engineering, 2006, 34(4): 547-563.
[26] [26] SMITH J, BAWOLEK E, LEE Y K, et al. Application of flexible flat panel display technology to wearable biomedical devices[J]. Electronics Letters, 2015, 51(17): 1312-1314.
[27] [27] ELSAMNAH F, BILGAIYAN A, AFFIQ M, et al. Comparative design study for power reduction in organic optoelectronic pulse meter sensor[J]. Biosensors, 2019, 9(2): 48.
[28] [28] ELSAMNAH F, BILGAIYAN A, AFFIQ M, et al. Reflectance-based organic pulse meter sensor for wireless monitoring of photoplethysmogram signal[J]. Biosensors, 2019, 9(3): 87.
[29] [29] ALLEN J. Photoplethysmography and its application in clinical physiological measurement[J]. Physiological Measurement, 2007, 28(3): R1-39.
[30] [30] LEE Y, LEE H, JANG J, et al. Sticker-type hybrid photoplethysmogram monitoring system integrating cmos ic with organic optical sensors[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7(1): 50-59.
[31] [31] LIM C J, LEE S, KIM J H, et al. Wearable, luminescent oxygen sensor for transcutaneous oxygen monitoring[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41026-41034.
[32] [32] KHAN Y, HAN D, TING J, et al. Organic multi-channel optoelectronic sensors for wearable health monitoring[J]. IEEE Access, 2019, 7: 128114-128124.
[33] [33] LEE H, KIM E, LEE Y, et al. Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch[J]. Science Advances, 2018, 4(11): eaas9530.
[34] [34] LOCHNER C M, KHAN Y, PIERRE A, et al. All-organic optoelectronic sensor for pulse oximetry[J]. Nature Communications, 2014, 5(1): 5745.
[35] [35] HAN D, KHAN Y, TING J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors[J]. Advanced Materials, 2017, 29(22): 1606206.
[36] [36] BANSAL A K, HOU S, KULYK O, et al. Wearable organic optoelectronic sensors for medicine[J]. Advanced Materials, 2015, 27(46): 7638-7644.
[37] [37] YOKOTA T, ZALAR P, KALTENBRUNNER M, et al. Ultraflexible organic photonic skin[J]. Science Advances, 2016, 2(4): e1501856.
[38] [38] KHAN Y, HAN D, PIERRE A, et al. A flexible organic reflectance oximeter array[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): E11015-E11024.
[39] [39] MIESENB?CK G. Optogenetic control of cells and circuits[J]. Annual Review of Cell and Developmental Biology, 2011, 27(1): 731-758.
[40] [40] DEISSEROTH K. Controlling the brain with light[J]. Scientific American, 2010, 303(5): 48-55.
[41] [41] VANN K T, XIONG Z G. Optogenetics for neurodegenerative diseases[J]. International Journal of Physiology, Pathophysiology and Pharmacology, 2016, 8(1): 1-8.
[42] [42] PACKER A M, ROSKA B, H?USSER M. Targeting neurons and photons for optogenetics[J]. Nature Neuroscience, 2013, 16(7): 805-815.
[43] [43] KALE R P, KOUZANI A Z, WALDER K, et al. Evolution of optogenetic microdevices[J]. Neurophotonics, 2015, 2(3): 031206.
[44] [44] MORTON A, MURAWSKI C, DENG Y L, et al. Photostimulation for in vitro optogenetics with high-power blue organic light-emitting diodes[J]. Advanced Biosystems, 2019, 3(3): e1800290.
[45] [45] SRIDHARAN A, SHAH A, KUMAR S S, et al. Optogenetic modulation of cortical neurons using organic light emitting diodes (OLEDs)[J]. Biomedical Physics & Engineering Express, 2020, 6(2): 025003.
[46] [46] MATARèSE B F E, FEYEN P L C, DE MELLO J C, et al. Sub-millisecond control of neuronal firing by organic light-emitting diodes[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 278.
[47] [47] GATHER M C. OLED microdisplays control cell behavior through optogenetics[J]. SID Symposium Digest of Technical Papers, 2016, 47(1): 699-702.
[48] [48] STEUDE A, GATHER M C. OLED microdisplays as biophotonics platform[C]//Proceedings of the Frontiers in Optics 2014. Tucson: Optical Society of America, 2014: FTh2B.4.
[49] [49] STEUDE A, WITTS E C, MILES G B, et al. Arrays of microscopic organic LEDs for high-resolution optogenetics[J]. Science Advances, 2016, 2(5): e1600061.
[50] [50] STEUDE A, JAHNEL M, THOMSCHKE M, et al. Controlling the behavior of single live cells with high density arrays of microscopic OLEDs[J]. Advanced Materials, 2015, 27(46): 7657-7661.
[51] [51] MURAWSKI C, MORTON A, SAMUEL I D W, et al. Organic light-emitting diodes for optogenetic stimulation of Drosophila larvae[C]//Proceedings of the Optics and Photonics for Energy and the Environment 2016. Leipzig: Optical Society of America, 2016: JW4A.9.
[52] [52] MORTON A, MURAWSKI C, PULVER S R, et al. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviourr[J]. Scientific Reports, 2016, 6: 31117.
[53] [53] MURAWSKI C, PULVER S R, GATHER M C. Segment-specific optogenetic stimulation in Drosophila melanogaster with linear arrays of organic light-emitting diodes[J]. Nature Communications, 2020, 11(1): 6248.
[54] [54] KIM D, YOKOTA T, SUZUKI T, et al. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(35): 21138-21146.
[55] [55] WANG Z M, HU M, AI X Z, et al. Near-infrared manipulation of membrane ion channels via upconversion optogenetics[J]. Advanced Biosystems, 2019, 3(1): e1800233.
[56] [56] KARU T I. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation[J]. Photochemistry and Photobiology, 2008, 84(5): 1091-1099.
[57] [57] HOURELD N N, MASHA R T, ABRAHAMSE H. Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells[J]. Lasers in Surgery and Medicine, 2012, 44(5): 429-434.
[58] [58] JEON Y, CHOI H R, KWON J H, et al. 22-4: wearable photobiomodulation patch using attachable flexible organic light-emitting diodes for human keratinocyte cells[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 279-282.
[59] [59] JEON Y, CHOI H R, LIM M, et al. A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects[J]. Advanced Materials Technologies, 2018, 3(5): 1700391.
[60] [60] JEON Y, CHOI H R, KWON J H, et al. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine[J]. Light, Science & Applications, 2019, 8: 114.
[61] [61] WU X J, ALBERICO S, SAIDU E, et al. Organic light emitting diode improves diabetic cutaneous wound healing in rats[J]. Wound Repair and Regeneration, 2015, 23(1): 104-114.
[62] [62] TANAKA H, SHIZU K, MIYAZAKI H, et al. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative[J]. Chemical Communications, 2012, 48(93): 11392-11394.
Get Citation
Copy Citation Text
GUO Xuan, LI Buhong. Organic Light-emitting Diode for Biomedicine[J]. Acta Laser Biology Sinica, 2021, 30(3): 193
Category:
Received: Feb. 7, 2021
Accepted: --
Published Online: Sep. 1, 2021
The Author Email: Buhong LI (bhli@fjnu.edu.cn)